Spaces:
Runtime error
Runtime error
gbarbadillo
commited on
Commit
•
39e14ce
1
Parent(s):
e3f1149
refactor and bugfix
Browse files
app.py
CHANGED
@@ -8,38 +8,7 @@ from insightface.utils import face_align
|
|
8 |
import gradio as gr
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
-
|
12 |
-
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
13 |
-
image_encoder_path = "IP-Adapter/models/image_encoder"
|
14 |
-
ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin"
|
15 |
-
|
16 |
-
|
17 |
-
if torch.cuda.is_available():
|
18 |
-
device = 'cuda'
|
19 |
-
torch_dtype = torch.float16
|
20 |
-
else:
|
21 |
-
device = 'cpu'
|
22 |
-
torch_dtype = torch.float32
|
23 |
-
print(f'Using device: {device}')
|
24 |
-
|
25 |
-
noise_scheduler = DDIMScheduler(
|
26 |
-
num_train_timesteps=1000,
|
27 |
-
beta_start=0.00085,
|
28 |
-
beta_end=0.012,
|
29 |
-
beta_schedule="scaled_linear",
|
30 |
-
clip_sample=False,
|
31 |
-
set_alpha_to_one=False,
|
32 |
-
steps_offset=1,
|
33 |
-
)
|
34 |
-
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype)
|
35 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
36 |
-
base_model_path,
|
37 |
-
torch_dtype=torch_dtype,
|
38 |
-
scheduler=noise_scheduler,
|
39 |
-
vae=vae,
|
40 |
-
feature_extractor=None,
|
41 |
-
safety_checker=None
|
42 |
-
)
|
43 |
|
44 |
def download_models():
|
45 |
hf_hub_download(
|
@@ -56,10 +25,45 @@ def download_models():
|
|
56 |
local_dir='IP-Adapter')
|
57 |
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
61 |
|
62 |
|
|
|
63 |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
64 |
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2)
|
65 |
|
|
|
8 |
import gradio as gr
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def download_models():
|
14 |
hf_hub_download(
|
|
|
25 |
local_dir='IP-Adapter')
|
26 |
|
27 |
|
28 |
+
def get_ip_model():
|
29 |
+
download_models()
|
30 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
31 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
32 |
+
image_encoder_path = "IP-Adapter/models/image_encoder"
|
33 |
+
ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin"
|
34 |
+
|
35 |
+
if torch.cuda.is_available():
|
36 |
+
device = 'cuda'
|
37 |
+
torch_dtype = torch.float16
|
38 |
+
else:
|
39 |
+
device = 'cpu'
|
40 |
+
torch_dtype = torch.float32
|
41 |
+
print(f'Using device: {device}')
|
42 |
+
|
43 |
+
noise_scheduler = DDIMScheduler(
|
44 |
+
num_train_timesteps=1000,
|
45 |
+
beta_start=0.00085,
|
46 |
+
beta_end=0.012,
|
47 |
+
beta_schedule="scaled_linear",
|
48 |
+
clip_sample=False,
|
49 |
+
set_alpha_to_one=False,
|
50 |
+
steps_offset=1,
|
51 |
+
)
|
52 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype)
|
53 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
54 |
+
base_model_path,
|
55 |
+
torch_dtype=torch_dtype,
|
56 |
+
scheduler=noise_scheduler,
|
57 |
+
vae=vae,
|
58 |
+
feature_extractor=None,
|
59 |
+
safety_checker=None
|
60 |
+
)
|
61 |
|
62 |
+
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch_dtype)
|
63 |
+
return ip_model
|
64 |
|
65 |
|
66 |
+
ip_model = get_ip_model()
|
67 |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
68 |
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2)
|
69 |
|