import torch from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL from PIL import Image from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus import cv2 from insightface.app import FaceAnalysis from insightface.utils import face_align import gradio as gr from huggingface_hub import hf_hub_download def download_models(): hf_hub_download( repo_id='h94/IP-Adapter-FaceID', filename='ip-adapter-faceid-plus_sd15.bin', local_dir='IP-Adapter-FaceID') hf_hub_download( repo_id='h94/IP-Adapter', filename='models/image_encoder/config.json', local_dir='IP-Adapter') hf_hub_download( repo_id='h94/IP-Adapter', filename='models/image_encoder/pytorch_model.bin', local_dir='IP-Adapter') def get_ip_model(): download_models() base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" vae_model_path = "stabilityai/sd-vae-ft-mse" image_encoder_path = "IP-Adapter/models/image_encoder" ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin" if torch.cuda.is_available(): device = 'cuda' torch_dtype = torch.float16 else: device = 'cpu' torch_dtype = torch.float32 print(f'Using device: {device}') noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype) pipe = StableDiffusionPipeline.from_pretrained( base_model_path, torch_dtype=torch_dtype, scheduler=noise_scheduler, vae=vae, feature_extractor=None, safety_checker=None ) ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch_dtype) return ip_model ip_model = get_ip_model() app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2) def generate_images(img_filepath, prompt, n_images=3, negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality, blurry", img_prompt_scale=0.5, num_inference_steps=30, seed=None): print(prompt) image = cv2.imread(img_filepath) faces = app.get(image) faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face images = ip_model.generate( prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, num_samples=n_images, width=512, height=512, num_inference_steps=num_inference_steps, seed=seed, scale=img_prompt_scale, # with scale=1 I get weird images ) return [images, Image.fromarray(face_image[..., [2, 1, 0]])] with gr.Blocks() as demo: gr.Markdown( """ # IP-Adapter-FaceID-plus Generate images conditioned on a image prompt and a text prompt. Learn more here: https://huggingface.co/h94/IP-Adapter-FaceID """) with gr.Row(): with gr.Column(): demo_inputs = [] demo_inputs.append(gr.Image(type='filepath', label='image prompt')) demo_inputs.append(gr.Textbox(label='text prompt', value='headshot of a man, green moss wall in the background')) demo_inputs.append(gr.Slider(maximum=3, minimum=1, value=3, step=1, label='number of images')) with gr.Accordion(label='Advanced options', open=False): demo_inputs.append(gr.Textbox(label='negative text prompt', value="monochrome, lowres, bad anatomy, worst quality, low quality, blurry")) demo_inputs.append(gr.Slider(maximum=1, minimum=0, value=0.5, step=0.05, label='image prompt scale')) btn = gr.Button("Generate") with gr.Column(): demo_outputs = [] demo_outputs.append(gr.Gallery(label='generated images')) demo_outputs.append(gr.Image(label='detected face', height=224, width=224)) btn.click(generate_images, inputs=demo_inputs, outputs=demo_outputs) sample_prompts = [ 'headshot of a man, green moss wall in the background', 'linkedin profile picture of a macdonalds worker', 'LinkedIn profile picture of a beautiful man dressed in a suit, huge explosion in the background', ] gr.Examples(sample_prompts, inputs=demo_inputs[1], label='Sample prompts') demo.launch(share=True, debug=True)