File size: 29,334 Bytes
82bf0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b55aa3
82bf0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e3881
 
 
 
 
 
 
 
 
 
 
 
 
53b6fb0
a8e3881
 
 
 
82bf0c3
 
 
 
e68508d
 
82bf0c3
 
 
 
 
 
 
 
 
 
 
a8e3881
82bf0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b55aa3
82bf0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53b6fb0
82bf0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6203dfe
82bf0c3
d047751
 
82bf0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fbcf89
82bf0c3
53b6fb0
82bf0c3
 
 
 
 
53b6fb0
 
 
 
82bf0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f304eac
82bf0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e3881
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
# Copyright (c) 2024 Jaerin Lee

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import sys

sys.path.append('../../src')

import argparse
import random
import time
import json
import os
import glob
import pathlib
from functools import partial
from pprint import pprint

import numpy as np
from PIL import Image
import torch

import gradio as gr
from huggingface_hub import snapshot_download
import spaces

from model import StableMultiDiffusionSDXLPipeline
from util import seed_everything
from prompt_util import preprocess_prompts, _quality_dict, _style_dict
from share_btn import community_icon_html, loading_icon_html, share_js


### Utils




def log_state(state):
    pprint(vars(opt))
    if isinstance(state, gr.State):
        state = state.value
    pprint(vars(state))


def is_empty_image(im: Image.Image) -> bool:
    if im is None:
        return True
    im = np.array(im)
    has_alpha = (im.shape[2] == 4)
    if not has_alpha:
        return False
    elif im.sum() == 0:
        return True
    else:
        return False


### Argument passing

# parser = argparse.ArgumentParser(description='Semantic Palette demo powered by StreamMultiDiffusion with SDXL support.')
# parser.add_argument('-H', '--height', type=int, default=1024)
# parser.add_argument('-W', '--width', type=int, default=2560)
# parser.add_argument('--model', type=str, default=None)
# parser.add_argument('--bootstrap_steps', type=int, default=1)
# parser.add_argument('--seed', type=int, default=-1)
# parser.add_argument('--device', type=int, default=0)
# parser.add_argument('--port', type=int, default=8000)
# opt = parser.parse_args()
opt = argparse.Namespace()
opt.height = 1024
opt.width = 2560
opt.model = None
opt.bootstrap_steps = 3
opt.seed = -1
# opt.device = 0
# opt.port = 8000



### Global variables and data structures

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)

if opt.model is None:
    model_dict = {
        'Animagine XL 3.1': 'cagliostrolab/animagine-xl-3.1',
    }
else:
    if opt.model.endswith('.safetensors'):
        opt.model = os.path.abspath(os.path.join('checkpoints', opt.model))
    model_dict = {os.path.splitext(os.path.basename(opt.model))[0]: opt.model}

models = {
    k: StableMultiDiffusionSDXLPipeline(device, hf_key=v, has_i2t=False).cuda()
    for k, v in model_dict.items()
}


prompt_suggestions = [
    '1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer',
    '1boy, solo, portrait, looking at viewer, white t-shirt, brown hair',
    '1girl, arima kana, oshi no ko, solo, upper body, from behind',
]

opt.max_palettes = 5
opt.default_prompt_strength = 1.0
opt.default_mask_strength = 1.0
opt.default_mask_std = 0.0
opt.default_negative_prompt = (
    'nsfw, worst quality, bad quality, normal quality, cropped, framed'
)
opt.verbose = True
opt.colors = [
    '#000000',
    '#2692F3',
    '#F89E12',
    '#16C232',
    '#F92F6C',
    '#AC6AEB',
    # '#92C62C',
    # '#92C6EC',
    # '#FECAC0',
]


### Event handlers

def add_palette(state):
    old_actives = state.active_palettes
    state.active_palettes = min(state.active_palettes + 1, opt.max_palettes)

    if opt.verbose:
        log_state(state)

    if state.active_palettes != old_actives:
        return [state] + [
            gr.update() if state.active_palettes != opt.max_palettes else gr.update(visible=False)
        ] + [
            gr.update() if i != state.active_palettes - 1 else gr.update(value=state.prompt_names[i + 1], visible=True)
            for i in range(opt.max_palettes)
        ]
    else:
        return [state] + [gr.update() for i in range(opt.max_palettes + 1)]


def select_palette(state, button, idx):
    if idx < 0 or idx > opt.max_palettes:
        idx = 0
    old_idx = state.current_palette
    if old_idx == idx:
        return [state] + [gr.update() for _ in range(opt.max_palettes + 7)]

    state.current_palette = idx

    if opt.verbose:
        log_state(state)

    updates = [state] + [
        gr.update() if i not in (idx, old_idx) else
        gr.update(variant='secondary') if i == old_idx else gr.update(variant='primary')
        for i in range(opt.max_palettes + 1)
    ]
    label = 'Background' if idx == 0 else f'Palette {idx}'
    updates.extend([
        gr.update(value=button, interactive=(idx > 0)),
        gr.update(value=state.prompts[idx], label=f'Edit Prompt for {label}'),
        gr.update(value=state.neg_prompts[idx], label=f'Edit Negative Prompt for {label}'),
        (
            gr.update(value=state.mask_strengths[idx - 1], interactive=True) if idx > 0 else
            gr.update(value=opt.default_mask_strength, interactive=False)
        ),
        (
            gr.update(value=state.prompt_strengths[idx - 1], interactive=True) if idx > 0 else
            gr.update(value=opt.default_prompt_strength, interactive=False)
        ),
        (
            gr.update(value=state.mask_stds[idx - 1], interactive=True) if idx > 0 else
            gr.update(value=opt.default_mask_std, interactive=False)
        ),
    ])
    return updates


def change_prompt_strength(state, strength):
    if state.current_palette == 0:
        return state

    state.prompt_strengths[state.current_palette - 1] = strength
    if opt.verbose:
        log_state(state)

    return state


def change_std(state, std):
    if state.current_palette == 0:
        return state

    state.mask_stds[state.current_palette - 1] = std
    if opt.verbose:
        log_state(state)

    return state


def change_mask_strength(state, strength):
    if state.current_palette == 0:
        return state

    state.mask_strengths[state.current_palette - 1] = strength
    if opt.verbose:
        log_state(state)

    return state


def reset_seed(state, seed):
    state.seed = seed
    if opt.verbose:
        log_state(state)

    return state

def rename_prompt(state, name):
    state.prompt_names[state.current_palette] = name
    if opt.verbose:
        log_state(state)

    return [state] + [
        gr.update() if i != state.current_palette else gr.update(value=name)
        for i in range(opt.max_palettes + 1)
    ]


def change_prompt(state, prompt):
    state.prompts[state.current_palette] = prompt
    if opt.verbose:
        log_state(state)

    return state


def change_neg_prompt(state, neg_prompt):
    state.neg_prompts[state.current_palette] = neg_prompt
    if opt.verbose:
        log_state(state)

    return state


def select_model(state, model_id):
    state.model_id = model_id
    if opt.verbose:
        log_state(state)

    return state


def select_style(state, style_name):
    state.style_name = style_name
    if opt.verbose:
        log_state(state)

    return state


def select_quality(state, quality_name):
    state.quality_name = quality_name
    if opt.verbose:
        log_state(state)

    return state


def import_state(state, json_text):
    current_palette = state.current_palette
    # active_palettes = state.active_palettes
    state = argparse.Namespace(**json.loads(json_text))
    state.active_palettes = opt.max_palettes
    return [state] + [
        gr.update(value=v, visible=True) for v in state.prompt_names
    ] + [
        state.model_id,
        state.style_name,
        state.quality_name,
        state.prompts[current_palette],
        state.prompt_names[current_palette],
        state.neg_prompts[current_palette],
        state.prompt_strengths[current_palette - 1],
        state.mask_strengths[current_palette - 1],
        state.mask_stds[current_palette - 1],
        state.seed,
    ]


### Main worker

@spaces.GPU
def generate(state, *args, **kwargs):
    return models[state.model_id](*args, **kwargs)



def run(state, drawpad):
    seed_everything(state.seed if state.seed >=0 else np.random.randint(2147483647))
    print('Generate!')

    background = drawpad['background'].convert('RGBA')
    inpainting_mode = np.asarray(background).sum() != 0
    print('Inpainting mode: ', inpainting_mode)

    user_input = np.asarray(drawpad['layers'][0]) # (H, W, 4)
    foreground_mask = torch.tensor(user_input[..., -1])[None, None] # (1, 1, H, W)
    user_input = torch.tensor(user_input[..., :-1]) # (H, W, 3)

    palette = torch.tensor([
        tuple(int(s[i+1:i+3], 16) for i in (0, 2, 4))
        for s in opt.colors[1:]
    ]) # (N, 3)
    masks = (palette[:, None, None, :] == user_input[None]).all(dim=-1)[:, None, ...] # (N, 1, H, W)
    has_masks = [i for i, m in enumerate(masks.sum(dim=(1, 2, 3)) == 0) if not m]
    print('Has mask: ', has_masks)
    masks = masks * foreground_mask
    masks = masks[has_masks]

    if inpainting_mode:
        prompts = [state.prompts[v + 1] for v in has_masks]
        negative_prompts = [state.neg_prompts[v + 1] for v in has_masks]
        mask_strengths = [state.mask_strengths[v] for v in has_masks]
        mask_stds = [state.mask_stds[v] for v in has_masks]
        prompt_strengths = [state.prompt_strengths[v] for v in has_masks]
    else:
        masks = torch.cat([torch.ones_like(foreground_mask), masks], dim=0)
        prompts = [state.prompts[0]] + [state.prompts[v + 1] for v in has_masks]
        negative_prompts = [state.neg_prompts[0]] + [state.neg_prompts[v + 1] for v in has_masks]
        mask_strengths = [1] + [state.mask_strengths[v] for v in has_masks]
        mask_stds = [0] + [state.mask_stds[v] for v in has_masks]
        prompt_strengths = [1] + [state.prompt_strengths[v] for v in has_masks]

    prompts, negative_prompts = preprocess_prompts(
        prompts, negative_prompts, style_name=state.style_name, quality_name=state.quality_name)

    return generate(
        state,
        prompts,
        negative_prompts,
        masks=masks,
        mask_strengths=mask_strengths,
        mask_stds=mask_stds,
        prompt_strengths=prompt_strengths,
        background=background.convert('RGB'),
        background_prompt=state.prompts[0],
        background_negative_prompt=state.neg_prompts[0],
        height=opt.height,
        width=opt.width,
        bootstrap_steps=opt.bootstrap_steps,
        guidance_scale=0,
    )



### Load examples


root = pathlib.Path(__file__).parent
print(root)
example_root = os.path.join(root, 'examples')
example_images = glob.glob(os.path.join(example_root, '*.png'))
example_images = [Image.open(i) for i in example_images]

with open(os.path.join(example_root, 'prompt_background_advanced.txt')) as f:
    prompts_background = [l.strip() for l in f.readlines() if l.strip() != '']

with open(os.path.join(example_root, 'prompt_girl.txt')) as f:
    prompts_girl = [l.strip() for l in f.readlines() if l.strip() != '']

with open(os.path.join(example_root, 'prompt_boy.txt')) as f:
    prompts_boy = [l.strip() for l in f.readlines() if l.strip() != '']

with open(os.path.join(example_root, 'prompt_props.txt')) as f:
    prompts_props = [l.strip() for l in f.readlines() if l.strip() != '']
    prompts_props = {l.split(',')[0].strip(): ','.join(l.split(',')[1:]).strip() for l in prompts_props}

prompt_background = lambda: random.choice(prompts_background)
prompt_girl = lambda: random.choice(prompts_girl)
prompt_boy = lambda: random.choice(prompts_boy)
prompt_props = lambda: np.random.choice(list(prompts_props.keys()), size=(opt.max_palettes - 2), replace=False).tolist()


### Main application

css = f"""
#run-button {{
    font-size: 30pt;
    background-image: linear-gradient(to right, #4338ca 0%, #26a0da 51%, #4338ca 100%);
    margin: 0;
    padding: 15px 45px;
    text-align: center;
    text-transform: uppercase;
    transition: 0.5s;
    background-size: 200% auto;
    color: white;
    box-shadow: 0 0 20px #eee;
    border-radius: 10px;
    display: block;
    background-position: right center;
}}

#run-button:hover {{
    background-position: left center;
    color: #fff;
    text-decoration: none;
}}

#semantic-palette {{
    border-style: solid;
    border-width: 0.2em;
    border-color: #eee;
}}

#semantic-palette:hover {{
    box-shadow: 0 0 20px #eee;
}}

#output-screen {{
    width: 100%;
    aspect-ratio: {opt.width} / {opt.height};
}}

.layer-wrap {{
    display: none;
}}
"""

for i in range(opt.max_palettes + 1):
    css = css + f"""
.secondary#semantic-palette-{i} {{
    background-image: linear-gradient(to right, #374151 0%, #374151 71%, {opt.colors[i]} 100%);
    color: white;
}}

.primary#semantic-palette-{i} {{
    background-image: linear-gradient(to right, #4338ca 0%, #4338ca 71%, {opt.colors[i]} 100%);
    color: white;
}}
"""


with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:

    iface = argparse.Namespace()

    def _define_state():
        state = argparse.Namespace()

        # Cursor.
        state.current_palette = 0 # 0: Background; 1,2,3,...: Layers
        state.model_id = list(model_dict.keys())[0]
        state.style_name = '(None)'
        state.quality_name = 'Standard v3.1'

        # State variables (one-hot).
        state.active_palettes = 1

        # Front-end initialized to the default values.
        prompt_props_ = prompt_props()
        state.prompt_names = [
            'πŸŒ„ Background',
            'πŸ‘§ Girl',
            'πŸ‘¦ Boy',
        ] + prompt_props_ + ['🎨 New Palette' for _ in range(opt.max_palettes - 5)]
        state.prompts = [
            prompt_background(),
            prompt_girl(),
            prompt_boy(),
        ] + [prompts_props[k] for k in prompt_props_] + ['' for _ in range(opt.max_palettes - 5)]
        state.neg_prompts = [
            opt.default_negative_prompt
            + (', humans, humans, humans' if i == 0 else '')
            for i in range(opt.max_palettes + 1)
        ]
        state.prompt_strengths = [opt.default_prompt_strength for _ in range(opt.max_palettes)]
        state.mask_strengths = [opt.default_mask_strength for _ in range(opt.max_palettes)]
        state.mask_stds = [opt.default_mask_std for _ in range(opt.max_palettes)]
        state.seed = opt.seed
        return state

    state = gr.State(value=_define_state)


    ### Demo user interface

    gr.HTML(
        """
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
    <div>
        <h1>🧠 Semantic Paint <b>X</b> Animagine XL 3.1 🎨</h1>
        <h5 style="margin: 0;">powered by</h5>
        <h3 style="margin-bottom: 0;">StreamMultiDiffusion: Real-Time Interactive Generation with Region-Based Semantic Control &nbsp; <em>and</em></h3>
        <h3 style="margin-top: 0;">Animagine XL 3.1 by Cagliostro Research Lab</h3>
        <h5 style="margin: 0;">If you ❀️ our project, please visit our Github and give us a 🌟!</h5>
        </br>
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <a href='https://arxiv.org/abs/2403.09055'>
                <img src="https://img.shields.io/badge/arXiv-2403.09055-red">
            </a>
            &nbsp;
            <a href='https://jaerinlee.com/research/StreamMultiDiffusion'>
                <img src='https://img.shields.io/badge/Project-Page-green' alt='Project Page'>
            </a>
            &nbsp;
            <a href='https://github.com/ironjr/StreamMultiDiffusion'>
                <img src='https://img.shields.io/github/stars/ironjr/StreamMultiDiffusion?label=Github&color=blue'>
            </a>
            &nbsp;
            <a href='https://twitter.com/_ironjr_'>
                <img src='https://img.shields.io/twitter/url?label=_ironjr_&url=https%3A%2F%2Ftwitter.com%2F_ironjr_'>
            </a>
            &nbsp;
            <a href='https://github.com/ironjr/StreamMultiDiffusion/blob/main/LICENSE'>
                <img src='https://img.shields.io/badge/license-MIT-lightgrey'>
            </a>
            &nbsp;
            <a href='https://huggingface.co/papers/2403.09055'>
                <img src='https://img.shields.io/badge/%F0%9F%A4%97%20Paper-StreamMultiDiffusion-yellow'>
            </a>
            &nbsp;
            <a href='https://huggingface.co/cagliostrolab/animagine-xl-3.1'>
                <img src='https://img.shields.io/badge/%F0%9F%A4%97%20Model-AnimagineXL3.1-yellow'>
            </a>
            &nbsp;
            <a href='https://huggingface.co/spaces/ironjr/SemanticPalette'>
                <img src='https://img.shields.io/badge/%F0%9F%A4%97%20Demo-v1.5-yellow'>
            </a>
        </div>
    </div>
</div>
<div>
    </br>
</div>
        """
    )

    with gr.Row():

        iface.image_slot = gr.Image(
            interactive=False,
            show_label=False,
            show_download_button=True,
            type='pil',
            label='Generated Result',
            elem_id='output-screen',
            value=lambda: random.choice(example_images),
        )

    with gr.Row():

        with gr.Column(scale=1):

            with gr.Group(elem_id='semantic-palette'):

                gr.HTML(
                    """
<div style="justify-content: center; align-items: center;">
    <br/>
    <h3 style="margin: 0; text-align: center;"><b>🧠 Semantic Palette 🎨</b></h3>
    <br/>
</div>
                    """
                )

                iface.btn_semantics = [gr.Button(
                    value=state.value.prompt_names[0],
                    variant='primary',
                    elem_id='semantic-palette-0',
                )]
                for i in range(opt.max_palettes):
                    iface.btn_semantics.append(gr.Button(
                        value=state.value.prompt_names[i + 1],
                        variant='secondary',
                        visible=(i < state.value.active_palettes),
                        elem_id=f'semantic-palette-{i + 1}'
                    ))

                iface.btn_add_palette = gr.Button(
                    value='Create New Semantic Brush',
                    variant='primary',
                )

            with gr.Accordion(label='Import/Export Semantic Palette', open=False):
                iface.tbox_state_import = gr.Textbox(label='Put Palette JSON Here To Import')
                iface.json_state_export = gr.JSON(label='Exported Palette')
                iface.btn_export_state = gr.Button("Export Palette ➑️ JSON", variant='primary')
                iface.btn_import_state = gr.Button("Import JSON ➑️ Palette", variant='secondary')

            gr.HTML(
                """
<div>
</br>
</div>
<div style="justify-content: center; align-items: center;">
<h3 style="margin: 0; text-align: center;"><b>❓Usage❓</b></h3>
</br>
<div style="justify-content: center; align-items: left; text-align: left;">
    <p>1-1. Type in the background prompt. Background is not required if you paint the whole drawpad.</p>
    <p>1-2. (Optional: <em><b>Inpainting mode</b></em>) Uploading a background image will make the app into inpainting mode. Removing the image returns to the creation mode. In the inpainting mode, increasing the <em>Mask Blur STD</em> > 8 for every colored palette is recommended for smooth boundaries.</p>
    <p>2. Select a semantic brush by clicking onto one in the <b>Semantic Palette</b> above. Edit prompt for the semantic brush.</p>
    <p>2-1. If you are willing to draw more diverse images, try <b>Create New Semantic Brush</b>.</p>
    <p>3. Start drawing in the <b>Semantic Drawpad</b> tab. The brush color is directly linked to the semantic brushes.</p>
    <p>4. Click [<b>GENERATE!</b>] button to create your (large-scale) artwork!</p>
</div>
</div>
                """
            )

            gr.HTML(
                """
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<h5 style="margin: 0;"><b>... or run in your own πŸ€— space!</b></h5>
</div>
                """
            )

            gr.DuplicateButton()

        with gr.Column(scale=4):

            with gr.Row():

                with gr.Column(scale=3):

                    iface.ctrl_semantic = gr.ImageEditor(
                        image_mode='RGBA',
                        sources=['upload', 'clipboard', 'webcam'],
                        transforms=['crop'],
                        crop_size=(opt.width, opt.height),
                        brush=gr.Brush(
                            colors=opt.colors[1:],
                            color_mode="fixed",
                        ),
                        type='pil',
                        label='Semantic Drawpad',
                        elem_id='drawpad',
                    )

                with gr.Column(scale=1):

                    iface.btn_generate = gr.Button(
                        value='Generate!',
                        variant='primary',
                        # scale=1,
                        elem_id='run-button'
                    )
                    with gr.Group(elem_id="share-btn-container"):
                        gr.HTML(community_icon_html)
                        gr.HTML(loading_icon_html)
                        iface.btn_share = gr.Button("Share with Community", elem_id="share-btn")

                    iface.model_select = gr.Radio(
                        list(model_dict.keys()),
                        label='Stable Diffusion Checkpoint',
                        info='Choose your favorite style.',
                        value=state.value.model_id,
                    )

                    with gr.Accordion(label='Prompt Engineering', open=True):
                        iface.quality_select = gr.Dropdown(
                            label='Quality Presets',
                            interactive=True,
                            choices=list(_quality_dict.keys()),
                            value='Standard v3.1',
                        )
                        iface.style_select = gr.Radio(
                            label='Style Preset',
                            container=True,
                            interactive=True,
                            choices=list(_style_dict.keys()),
                            value='(None)',
                        )

            with gr.Group(elem_id='control-panel'):

                with gr.Row():
                    iface.tbox_prompt = gr.Textbox(
                        label='Edit Prompt for Background',
                        info='What do you want to draw?',
                        value=state.value.prompts[0],
                        placeholder=lambda: random.choice(prompt_suggestions),
                        scale=2,
                    )

                    iface.tbox_name = gr.Textbox(
                        label='Edit Brush Name',
                        info='Just for your convenience.',
                        value=state.value.prompt_names[0],
                        placeholder='πŸŒ„ Background',
                        scale=1,
                    )

                with gr.Row():
                    iface.tbox_neg_prompt = gr.Textbox(
                        label='Edit Negative Prompt for Background',
                        info='Add unwanted objects for this semantic brush.',
                        value=opt.default_negative_prompt,
                        scale=2,
                    )

                    iface.slider_strength = gr.Slider(
                        label='Prompt Strength',
                        info='Blends fg & bg in the prompt level, >0.8 Preferred.',
                        minimum=0.5,
                        maximum=1.0,
                        value=opt.default_prompt_strength,
                        scale=1,
                    )

                with gr.Row():
                    iface.slider_alpha = gr.Slider(
                        label='Mask Alpha',
                        info='Factor multiplied to the mask before quantization. Extremely sensitive, >0.98 Preferred.',
                        minimum=0.5,
                        maximum=1.0,
                        value=opt.default_mask_strength,
                    )

                    iface.slider_std = gr.Slider(
                        label='Mask Blur STD',
                        info='Blends fg & bg in the latent level, 0 for generation, 8-32 for inpainting.',
                        minimum=0.0001,
                        maximum=100.0,
                        value=opt.default_mask_std,
                    )

                    iface.slider_seed = gr.Slider(
                        label='Seed',
                        info='The global seed.',
                        minimum=-1,
                        maximum=2147483647,
                        step=1,
                        value=opt.seed,
                    )

    ### Attach event handlers

    for idx, btn in enumerate(iface.btn_semantics):
        btn.click(
            fn=partial(select_palette, idx=idx),
            inputs=[state, btn],
            outputs=[state] + iface.btn_semantics + [
                iface.tbox_name,
                iface.tbox_prompt,
                iface.tbox_neg_prompt,
                iface.slider_alpha,
                iface.slider_strength,
                iface.slider_std,
            ],
            api_name=f'select_palette_{idx}',
        )

    iface.btn_add_palette.click(
        fn=add_palette,
        inputs=state,
        outputs=[state, iface.btn_add_palette] + iface.btn_semantics[1:],
        api_name='create_new',
    )

    iface.btn_generate.click(
        fn=run,
        inputs=[state, iface.ctrl_semantic],
        outputs=iface.image_slot,
        api_name='run',
    )

    iface.slider_alpha.input(
        fn=change_mask_strength,
        inputs=[state, iface.slider_alpha],
        outputs=state,
        api_name='change_alpha',
    )
    iface.slider_std.input(
        fn=change_std,
        inputs=[state, iface.slider_std],
        outputs=state,
        api_name='change_std',
    )
    iface.slider_strength.input(
        fn=change_prompt_strength,
        inputs=[state, iface.slider_strength],
        outputs=state,
        api_name='change_strength',
    )
    iface.slider_seed.input(
        fn=reset_seed,
        inputs=[state, iface.slider_seed],
        outputs=state,
        api_name='reset_seed',
    )

    iface.tbox_name.input(
        fn=rename_prompt,
        inputs=[state, iface.tbox_name],
        outputs=[state] + iface.btn_semantics,
        api_name='prompt_rename',
    )
    iface.tbox_prompt.input(
        fn=change_prompt,
        inputs=[state, iface.tbox_prompt],
        outputs=state,
        api_name='prompt_edit',
    )
    iface.tbox_neg_prompt.input(
        fn=change_neg_prompt,
        inputs=[state, iface.tbox_neg_prompt],
        outputs=state,
        api_name='neg_prompt_edit',
    )

    iface.model_select.change(
        fn=select_model,
        inputs=[state, iface.model_select],
        outputs=state,
        api_name='model_select',
    )
    iface.style_select.change(
        fn=select_style,
        inputs=[state, iface.style_select],
        outputs=state,
        api_name='style_select',
    )
    iface.quality_select.change(
        fn=select_quality,
        inputs=[state, iface.quality_select],
        outputs=state,
        api_name='quality_select',
    )

    iface.btn_share.click(None, [], [], js=share_js)

    iface.btn_export_state.click(lambda x: vars(x), state, iface.json_state_export)
    iface.btn_import_state.click(import_state, [state, iface.tbox_state_import], [
        state,
        *iface.btn_semantics,
        iface.model_select,
        iface.style_select,
        iface.quality_select,
        iface.tbox_prompt,
        iface.tbox_name,
        iface.tbox_neg_prompt,
        iface.slider_strength,
        iface.slider_alpha,
        iface.slider_std,
        iface.slider_seed,
    ])

    gr.HTML(
        """
<div class="footer">
    <p>We thank <a href="https://cagliostrolab.net/">Cagliostro Research Lab</a> for their permission to use <a href="https://huggingface.co/cagliostrolab/animagine-xl-3.1">Animagine XL 3.1</a> model under academic purpose.
    Note that the MIT license only applies to StreamMultiDiffusion and Semantic Palette demo app, but not Animagine XL 3.1 model, which is distributed under <a href="https://freedevproject.org/faipl-1.0-sd/">Fair AI Public License 1.0-SD</a>.
    </p>
</div>
       """
    )

if __name__ == '__main__':
    demo.queue(max_size=20).launch()