Spaces:
Running
on
A10G
Running
on
A10G
File size: 9,736 Bytes
b5de3c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# Copyright (c) 2024 Jaerin Lee
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import copy
from typing import Optional, Union
from PIL import Image
import torch
class BackgroundObject:
def __init__(
self,
image: Optional[Image.Image] = None,
prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
) -> None:
self.image = image
self.prompt = prompt
self.negative_prompt = negative_prompt
@property
def is_empty(self) -> bool:
return (
self.image is None and
self.prompt is None and
self.negative_prompt is None
)
def extra_repr(self) -> str:
return ''
def __repr__(self) -> str:
strings = []
if self.image is not None:
if isinstance(self.image, Image.Image):
image_str = f'Image(size={str(self.image.size)})'
else:
image_str = f'Tensor(shape={str(self.image.shape)})'
strings.append(f'image={image_str}')
if self.prompt is not None:
strings.append(f'prompt="{self.prompt}"')
if self.negative_prompt is not None:
strings.append(f'negative_prompt="{self.negative_prompt}"')
extra_repr = self.extra_repr()
if extra_repr != '':
strings.append(extra_repr)
return f'{type(self).__name__}({", ".join(strings)})'
class LayerObject:
def __init__(
self,
idx: Optional[int] = None,
prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
suffix: Optional[str] = None,
prompt_strength: Optional[float] = None,
mask: Optional[Union[torch.Tensor, Image.Image]] = None,
mask_std: Optional[float] = None,
mask_strength: Optional[float] = None,
) -> None:
self.idx = idx
self.prompt = prompt
self.negative_prompt = negative_prompt
self.suffix = suffix
self.prompt_strength = prompt_strength
self.mask = mask
self.mask_std = mask_std
self.mask_strength = mask_strength
@property
def is_empty(self) -> bool:
return (
self.prompt is None and
self.negative_prompt is None and
self.prompt_strength is None and
self.mask is None and
self.mask_strength is None and
self.mask_std is None
)
def merge(self, other: 'LayerObject') -> bool: # Overriden or not.
if self.idx != other.idx:
# Merge only the modification requests for the same layer.
return False
if self.prompt is None and other.prompt is not None:
self.prompt = copy.deepcopy(other.prompt)
if self.negative_prompt is None and other.negative_prompt is not None:
self.negative_prompt = copy.deepcopy(other.negative_prompt)
if self.suffix is None and other.suffix is not None:
self.suffix = copy.deepcopy(other.suffix)
if self.prompt_strength is None and other.prompt_strength is not None:
self.prompt_strength = copy.deepcopy(other.prompt_strength)
if self.mask is None and other.mask is not None:
self.mask = copy.deepcopy(other.mask)
if self.mask_strength is None and other.mask_strength is not None:
self.mask_strength = copy.deepcopy(other.mask_strength)
if self.mask_std is None and other.mask_std is not None:
self.mask_std = copy.deepcopy(other.mask_std)
return True
def extra_repr(self) -> str:
return ''
def __repr__(self) -> str:
strings = []
if self.idx is not None:
strings.append(f'idx={self.idx}')
if self.prompt is not None:
strings.append(f'prompt="{self.prompt}"')
if self.negative_prompt is not None:
strings.append(f'negative_prompt="{self.negative_prompt}"')
if self.suffix is not None:
strings.append(f'suffix="{self.suffix}"')
if self.prompt_strength is not None:
strings.append(f'prompt_strength={self.prompt_strength}')
if self.mask is not None:
if isinstance(self.mask, Image.Image):
mask_str = f'Image(size={str(self.mask.size)})'
else:
mask_str = f'Tensor(shape={str(self.mask.shape)})'
strings.append(f'mask={mask_str}')
if self.mask_std is not None:
strings.append(f'mask_std={self.mask_std}')
if self.mask_strength is not None:
strings.append(f'mask_strength={self.mask_strength}')
extra_repr = self.extra_repr()
if extra_repr != '':
strings.append(extra_repr)
return f'{type(self).__name__}({", ".join(strings)})'
class BackgroundState(BackgroundObject):
def __init__(
self,
image: Optional[Image.Image] = None,
prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
latent: Optional[torch.Tensor] = None,
embed: Optional[torch.Tensor] = None,
) -> None:
super().__init__(image, prompt, negative_prompt)
self.latent = latent
self.embed = embed
@property
def is_incomplete(self) -> bool:
return (
self.image is None or
self.prompt is None or
self.negative_prompt is None or
self.latent is None or
self.embed is None
)
def extra_repr(self) -> str:
strings = []
if self.latent is not None:
strings.append(f'latent=Tensor(shape={str(self.latent.shape)})')
if self.embed is not None:
strings.append(f'embed=Tuple[Tensor(shape={str(self.embed[0].shape)})]')
return ', '.join(strings)
# TODO
# class LayerState:
# def __init__(
# self,
# prompst: List[str] = [],
# negative_prompts: List[str] = [],
# suffix: List[str] = [],
# masks: Optional[torch.Tensor] = None,
# mask_std: Optional[torch.Tensor] = None,
# mask_strength: Optional[torch.Tensor] = None,
# original_masks: Optional[Union[torch.Tensor, List[Image.Image]]] = None,
# ) -> None:
# self.prompts = prompts
# self.negative_prompts = negative_prompts
# self.suffix = suffix
# self.masks = masks
# self.mask_std = mask_std
# self.mask_strength = mask_strength
# self.original_masks = original_masks
# def __len__(self) -> int:
# self.check_integrity(True)
# return len(self.prompts)
# @property
# def is_empty(self) -> bool:
# self.check_integrity(True)
# return len(self.prompt) == 0
# def check_integrity(self, throw_error: bool = True) -> bool:
# p = len(self.prompts)
# flag = (
# p != len(self.negative_prompts) or
# p != len(self.suffix) or
# p != len(self.masks) or
# p != len(self.mask_std) or
# p != len(self.mask_strength) or
# p != len(self.original_masks)
# )
# if flag and throw_error:
# print(
# f'LayerState(\n\tlen(prompts): {p},\n\tlen(negative_prompts): {len(self.negative_prompts)},\n\t'
# f'len(suffix): {len(self.suffix)},\n\tlen(masks): {len(self.masks)},\n\t'
# f'len(mask_std): {len(self.mask_std)},\n\tlen(mask_strength): {len(self.mask_strength)},\n\t'
# f'len(original_masks): {len(self.original_masks)}\n)'
# )
# raise ValueError('LayerState is corrupted!')
# return not flag
# def extra_repr(self) -> str:
# strings = []
# if self.idx is not None:
# strings.append(f'idx={self.idx}')
# if self.prompt is not None:
# strings.append(f'prompt="{self.prompt}"')
# if self.negative_prompt is not None:
# strings.append(f'negative_prompt="{self.negative_prompt}"')
# if self.suffix is not None:
# strings.append(f'suffix="{self.suffix}"')
# if self.mask is not None:
# if isinstance(self.mask, Image.Image):
# mask_str = f'PIL.Image.Image(size={str(self.mask.size)})'
# else:
# mask_str = f'torch.Tensor(shape={str(self.mask.shape)})'
# strings.append(f'mask={mask_str}')
# if self.mask_std is not None:
# strings.append(f'mask_std={self.mask_std}')
# if self.mask_strength is not None:
# strings.append(f'mask_strength={self.mask_strength}')
# return f'{type(self).__name__}({", ".join(strings)})' |