File size: 2,452 Bytes
8baab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b51526
8baab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

#app.py:
# from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastcore.xtras import Path
from fastai.callback.hook import summary
from fastai.callback.progress import ProgressCallback
from fastai.callback.schedule import lr_find, fit_flat_cos
from fastai.data.block import DataBlock
from fastai.data.external import untar_data, URLs
from fastai.data.transforms import get_image_files, FuncSplitter, Normalize
from fastai.layers import Mish
from fastai.losses import BaseLoss
from fastai.optimizer import ranger
from fastai.torch_core import tensor
from fastai.vision.augment import aug_transforms
from fastai.vision.core import PILImage, PILMask
from fastai.vision.data import ImageBlock, MaskBlock, imagenet_stats
from fastai.vision.learner import unet_learner
from PIL import Image
import numpy as np
from torch import nn
from torchvision.models.resnet import resnet34
import torch
import torch.nn.functional as F


# # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
repo_id = "islasher/segm-grapes"


# # Definimos una función que se encarga de llevar a cabo las predicciones


# # Cargar el modelo y el tokenizador
learn = load_learner(repo_id)
#learner = from_pretrained_fastai(repo_id)

import torchvision.transforms as transforms
def transform_image(image):
    my_transforms = transforms.Compose([transforms.ToTensor(),
                                        transforms.Normalize(
                                            [0.485, 0.456, 0.406],
                                            [0.229, 0.224, 0.225])])
    image_aux = image
    return my_transforms(image_aux).unsqueeze(0).to(device)






# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
    image = transforms.Resize((480,640))(img)
    tensor = transform_image(image=image)
    with torch.no_grad():
        outputs = learn.model(tensor)
    
    outputs = torch.argmax(outputs,1)

    mask = np.array(outputs.cpu())
    mask[mask==1]=150
    mask[mask==3]=76 #pole # y no 74
# mask[mask==5]=74 #pole
    mask[mask==2]=29 #wood # y no 25
# mask[mask==6]=25 #wood
    mask[mask==4]=255 #grape
    mask=np.reshape(mask,(480,640)) #en modo matriz
    return Image.fromarray(mask.astype('uint8'))
    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape=(480,640)),examples=['color_154.jpg','color_155.jpg']).launch(share=False)