Spaces:
Sleeping
Sleeping
File size: 2,452 Bytes
8baab4e 1b51526 8baab4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
#app.py:
# from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastcore.xtras import Path
from fastai.callback.hook import summary
from fastai.callback.progress import ProgressCallback
from fastai.callback.schedule import lr_find, fit_flat_cos
from fastai.data.block import DataBlock
from fastai.data.external import untar_data, URLs
from fastai.data.transforms import get_image_files, FuncSplitter, Normalize
from fastai.layers import Mish
from fastai.losses import BaseLoss
from fastai.optimizer import ranger
from fastai.torch_core import tensor
from fastai.vision.augment import aug_transforms
from fastai.vision.core import PILImage, PILMask
from fastai.vision.data import ImageBlock, MaskBlock, imagenet_stats
from fastai.vision.learner import unet_learner
from PIL import Image
import numpy as np
from torch import nn
from torchvision.models.resnet import resnet34
import torch
import torch.nn.functional as F
# # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
repo_id = "islasher/segm-grapes"
# # Definimos una función que se encarga de llevar a cabo las predicciones
# # Cargar el modelo y el tokenizador
learn = load_learner(repo_id)
#learner = from_pretrained_fastai(repo_id)
import torchvision.transforms as transforms
def transform_image(image):
my_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_aux = image
return my_transforms(image_aux).unsqueeze(0).to(device)
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
image = transforms.Resize((480,640))(img)
tensor = transform_image(image=image)
with torch.no_grad():
outputs = learn.model(tensor)
outputs = torch.argmax(outputs,1)
mask = np.array(outputs.cpu())
mask[mask==1]=150
mask[mask==3]=76 #pole # y no 74
# mask[mask==5]=74 #pole
mask[mask==2]=29 #wood # y no 25
# mask[mask==6]=25 #wood
mask[mask==4]=255 #grape
mask=np.reshape(mask,(480,640)) #en modo matriz
return Image.fromarray(mask.astype('uint8'))
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape=(480,640)),examples=['color_154.jpg','color_155.jpg']).launch(share=False) |