Spaces:
Sleeping
Sleeping
File size: 4,636 Bytes
8baab4e af8ae33 aa505fc 8baab4e 700c119 c1bd082 700c119 efc5497 12614b1 efc5497 700c119 8baab4e a092642 8baab4e a092642 8baab4e a092642 8baab4e bc79f70 a092642 8baab4e aa505fc 2f428ca 6786150 2f428ca 6786150 7b321d1 66cbf63 326ff8a 8baab4e 326ff8a 8baab4e c6e5959 8baab4e 1b51526 8baab4e 4c173bc 8baab4e 0457a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
#app.py:
# from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai import *
from fastai.data.block import DataBlock
from fastai.data.transforms import get_image_files, FuncSplitter, Normalize
from fastai.layers import Mish
from fastai.losses import BaseLoss
from fastai.optimizer import ranger
from fastai.torch_core import tensor
from fastai.vision.augment import aug_transforms
from fastai.vision.core import PILImage, PILMask
from fastai.vision.data import ImageBlock, MaskBlock, imagenet_stats
from fastai.vision.learner import unet_learner
from PIL import Image
import numpy as np
from torch import nn
import torch
import torch.nn.functional as F
#from __future__ import annotations
#from nbdev.showdoc import *
#from fastai import fastcore
from fastcore.test import *
from fastcore.nb_imports import *
from fastcore.imports import *
from fastcore.foundation import *
from fastcore.utils import *
from fastcore.dispatch import *
from fastcore.transform import *
import inspect
# # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
# repo_id = "islasher/segm-grapes"
# repo_id='islasher/segm-grapes'
# # Definimos una función que se encarga de llevar a cabo las predicciones
# from fastai.learner import load_learner
# # Cargar el modelo y el tokenizador
# learn = load_learner(repo_id)
#learner = from_pretrained_fastai(repo_id)
class ItemTransform(Transform):
"A transform that always take tuples as items"
_retain = True
def __call__(self, x, **kwargs): return self._call1(x, '__call__', **kwargs)
def decode(self, x, **kwargs): return self._call1(x, 'decode', **kwargs)
def _call1(self, x, name, **kwargs):
if not _is_tuple(x): return getattr(super(), name)(x, **kwargs)
y = getattr(super(), name)(list(x), **kwargs)
if not self._retain: return y
if is_listy(y) and not isinstance(y, tuple): y = tuple(y)
return retain_type(y, x)
from huggingface_hub import from_pretrained_fastai
import torchvision.transforms as transforms
# from Transform import ItemTransform
from albumentations import (
Compose,
OneOf,
ElasticTransform,
GridDistortion,
OpticalDistortion,
HorizontalFlip,
Rotate,
Transpose,
CLAHE,
ShiftScaleRotate
)
class SegmentationAlbumentationsTransform(ItemTransform):
split_idx = 0
def __init__(self, aug):
self.aug = aug
def encodes(self, x):
img,mask = x
aug = self.aug(image=np.array(img), mask=np.array(mask))
return PILImage.create(aug["image"]), PILMask.create(aug["mask"])
class TargetMaskConvertTransform(ItemTransform):
def __init__(self):
pass
def encodes(self, x):
img,mask = x
#Convert to array
mask = np.array(mask)
# Changes: (codes= array(['Background', 'Leaves', 'Wood', 'Pole', 'Grape'], dtype='<U10'))
mask[mask==150]=1 #leaves
mask[mask==76]=3 #pole
mask[mask==74]=3 #pole
mask[mask==29]=2 #wood
mask[mask==25]=2 #wood
mask[mask==255]=4 #grape
mask[mask==0]=0
# Back to PILMask
mask = PILMask.create(mask)
return img, mask
def get_y_fn (x):
return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png"))
learn = from_pretrained_fastai("islasher/segm-grapes")
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def transform_image(image):
my_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_aux = image
return my_transforms(image_aux).unsqueeze(0)#.to(device)
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
img=Image.fromarray(img)
image = transforms.Resize((480,640))(img)
tensor = transform_image(image=image)
with torch.no_grad():
outputs = learn.model(tensor)
outputs = torch.argmax(outputs,1)
mask = np.array(outputs)
mask[mask==1]=150
mask[mask==3]=76 #pole # y no 74
# mask[mask==5]=74 #pole
mask[mask==2]=29 #wood # y no 25
# mask[mask==6]=25 #wood
mask[mask==4]=255 #grape
mask=np.reshape(mask,(480,640)) #en modo matriz
return Image.fromarray(mask.astype('uint8'))
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Image(),examples=['color_154.jpg','color_155.jpg']).launch(share=False) #shape=(128, 128) shape=(480,640) |