#app.py: # from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai import * from fastai.data.block import DataBlock from fastai.data.transforms import get_image_files, FuncSplitter, Normalize from fastai.layers import Mish from fastai.losses import BaseLoss from fastai.optimizer import ranger from fastai.torch_core import tensor from fastai.vision.augment import aug_transforms from fastai.vision.core import PILImage, PILMask from fastai.vision.data import ImageBlock, MaskBlock, imagenet_stats from fastai.vision.learner import unet_learner from PIL import Image import numpy as np from torch import nn import torch import torch.nn.functional as F # # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" # repo_id = "islasher/segm-grapes" # repo_id='islasher/segm-grapes' # # Definimos una función que se encarga de llevar a cabo las predicciones # from fastai.learner import load_learner # # Cargar el modelo y el tokenizador # learn = load_learner(repo_id) #learner = from_pretrained_fastai(repo_id) class ItemTransform(Transform): "A transform that always take tuples as items" _retain = True def __call__(self, x, **kwargs): return self._call1(x, '__call__', **kwargs) def decode(self, x, **kwargs): return self._call1(x, 'decode', **kwargs) def _call1(self, x, name, **kwargs): if not _is_tuple(x): return getattr(super(), name)(x, **kwargs) y = getattr(super(), name)(list(x), **kwargs) if not self._retain: return y if is_listy(y) and not isinstance(y, tuple): y = tuple(y) return retain_type(y, x) from huggingface_hub import from_pretrained_fastai import torchvision.transforms as transforms # from Transform import ItemTransform from albumentations import ( Compose, OneOf, ElasticTransform, GridDistortion, OpticalDistortion, HorizontalFlip, Rotate, Transpose, CLAHE, ShiftScaleRotate ) class SegmentationAlbumentationsTransform(ItemTransform): split_idx = 0 def __init__(self, aug): self.aug = aug def encodes(self, x): img,mask = x aug = self.aug(image=np.array(img), mask=np.array(mask)) return PILImage.create(aug["image"]), PILMask.create(aug["mask"]) class TargetMaskConvertTransform(ItemTransform): def __init__(self): pass def encodes(self, x): img,mask = x #Convert to array mask = np.array(mask) # Changes: (codes= array(['Background', 'Leaves', 'Wood', 'Pole', 'Grape'], dtype='