Spaces:
Running
Running
import gradio as gr | |
from ultralytics import YOLO | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFilter, ImageOps | |
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation, pipeline | |
import torchvision.transforms | |
import torch | |
transform = torchvision.transforms.ToPILImage() | |
seg_model = YOLO("yolov8m-seg.pt") | |
lp_model = YOLO("yolov8m_lp.pt") | |
def detect_person(image: Image): | |
result = seg_model(image, device="CPU")[0] | |
masks = result.masks.data | |
clss = result.boxes.cls | |
person_indices = torch.where(clss == 0) | |
person_masks = masks[person_indices] | |
people_mask = torch.any(person_masks, dim=0).to(torch.uint8) * 255 | |
mask = transform(~people_mask) | |
mask = mask.resize((image.width, image.height), resample=Image.Resampling.BILINEAR) | |
return mask | |
def detect_license_plate(image: Image): | |
result = lp_model(image, imgsz=(image.height, image.width), device="cpu")[0] | |
boxes = result.boxes.data[:, :4] | |
mask = Image.new(mode="L", size=image.size, color=255) | |
draw = ImageDraw.Draw(mask) | |
for box in boxes: | |
draw.rectangle(list(box), fill=0) | |
return mask | |
def detect_dummy(image: Image): | |
return Image.new(mode="L", size=image.size, color=255) | |
detectors = { | |
"Person": detect_person, | |
"License Plate": detect_license_plate | |
} | |
def test_gradio(image): | |
masks = [detect_person(image), detect_license_plate(image)] | |
combined = np.minimum.reduce([np.array(m) for m in masks]) | |
mask = Image.fromarray(combined) | |
# Apply blur through mask | |
blurred = image.filter(ImageFilter.GaussianBlur(30)) | |
anonymized = Image.composite(image, blurred, mask) | |
## TODO: Tempfile statt einem generischen File | |
anonymized.save("anon.JPG") | |
return "anon.JPG" | |
# demo_live = gr.Interface( | |
# fn=test_gradio, | |
# inputs=gr.Image(source="webcam", type="pil", shape=(640, 480)), | |
# outputs=gr.Image(type="pil") | |
# ) | |
demo_upload = gr.Interface( | |
fn=test_gradio, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image() | |
) | |
# demo = gr.TabbedInterface( | |
# interface_list=[demo_live, demo_upload], | |
# tab_names=["Webcam", "Bild hochladen"], | |
# title="Image Anonymizer" | |
# ) | |
print(__name__) | |
demo_upload.launch(server_name="localhost", server_port=8080) | |