|
from typing import Optional |
|
|
|
import gradio as gr |
|
import torch |
|
from peft import PeftModel |
|
from transformers import GenerationConfig |
|
from transformers import LlamaForCausalLM |
|
from transformers import LlamaTokenizer |
|
|
|
print("starting server ...") |
|
|
|
|
|
BASE_MODEL = "decapoda-research/llama-13b-hf" |
|
LORA_WEIGHTS = "izumi-lab/llama-13b-japanese-lora-v0-1ep" |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
device = "mps" |
|
except Exception: |
|
pass |
|
|
|
if device == "cuda": |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
load_in_8bit=False, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained(model, LORA_WEIGHTS, torch_dtype=torch.float16) |
|
elif device == "mps": |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map={"": device}, |
|
torch_dtype=torch.float16, |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
LORA_WEIGHTS, |
|
device_map={"": device}, |
|
torch_dtype=torch.float16, |
|
) |
|
else: |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
LORA_WEIGHTS, |
|
device_map={"": device}, |
|
) |
|
|
|
|
|
def generate_prompt(instruction: str, input: Optional[str] = None): |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Input: |
|
{input} |
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Response:""" |
|
|
|
|
|
if device != "cpu": |
|
model.half() |
|
model.eval() |
|
if torch.__version__ >= "2": |
|
model = torch.compile(model) |
|
|
|
|
|
def evaluate( |
|
instruction: str, |
|
input: Optional[str] = None, |
|
temperature: float = 0.7, |
|
top_p: float = 1.0, |
|
top_k: int = 40, |
|
num_beams: int = 4, |
|
max_new_tokens: int = 256, |
|
**kwargs, |
|
): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
return output.split("### Response:")[1].strip() |
|
|
|
|
|
g = gr.Interface( |
|
fn=evaluate, |
|
inputs=[ |
|
gr.components.Textbox(lines=2, label="Instruction", placeholder="東京から大阪に行くには?"), |
|
gr.components.Textbox(lines=2, label="Input", placeholder="none"), |
|
gr.components.Slider(minimum=0, maximum=1, value=0.7, label="Temperature"), |
|
gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Top p"), |
|
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), |
|
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), |
|
gr.components.Slider( |
|
minimum=1, maximum=512, step=1, value=128, label="Max tokens" |
|
), |
|
], |
|
outputs=[ |
|
gr.inputs.Textbox( |
|
lines=5, |
|
label="Output", |
|
) |
|
], |
|
title="izumi-lab/calm-7b-lora-v0-1ep", |
|
description="izumi-lab/calm-7b-lora-v0-1ep is a 7B-parameter Calm model finetuned to follow instructions. It is trained on the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) dataset and makes use of the Huggingface Calm-7b implementation. For more information, please visit [the project's website](https://llm.msuzuki.me).", |
|
) |
|
g.queue(concurrency_count=1) |
|
print("loading completed") |
|
g.launch() |
|
|