|
import datetime |
|
import json |
|
import os |
|
import shutil |
|
from typing import Optional |
|
from typing import Tuple |
|
|
|
import gradio as gr |
|
import torch |
|
from fastchat.serve.inference import compress_module |
|
from fastchat.serve.inference import raise_warning_for_old_weights |
|
from huggingface_hub import Repository |
|
from huggingface_hub import hf_hub_download |
|
from huggingface_hub import snapshot_download |
|
from peft import LoraConfig |
|
from peft import get_peft_model |
|
from peft import set_peft_model_state_dict |
|
from transformers import AutoModelForCausalLM |
|
from transformers import GenerationConfig |
|
from transformers import LlamaTokenizer |
|
|
|
print(datetime.datetime.now()) |
|
|
|
NUM_THREADS = 1 |
|
|
|
print(NUM_THREADS) |
|
|
|
print("starting server ...") |
|
|
|
BASE_MODEL = "decapoda-research/llama-13b-hf" |
|
LORA_WEIGHTS = "izumi-lab/llama-13b-japanese-lora-v0-1ep" |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
DATASET_REPOSITORY = os.environ.get("DATASET_REPOSITORY", None) |
|
|
|
repo = None |
|
LOCAL_DIR = "/home/user/data/" |
|
PROMPT_LANG = "en" |
|
assert PROMPT_LANG in ["ja", "en"] |
|
|
|
if HF_TOKEN and DATASET_REPOSITORY: |
|
try: |
|
shutil.rmtree(LOCAL_DIR) |
|
except Exception: |
|
pass |
|
|
|
repo = Repository( |
|
local_dir=LOCAL_DIR, |
|
clone_from=DATASET_REPOSITORY, |
|
use_auth_token=HF_TOKEN, |
|
repo_type="dataset", |
|
) |
|
repo.git_pull() |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
device = "mps" |
|
except Exception: |
|
pass |
|
|
|
resume_from_checkpoint = snapshot_download( |
|
repo_id=LORA_WEIGHTS, use_auth_token=HF_TOKEN |
|
) |
|
checkpoint_name = hf_hub_download( |
|
repo_id=LORA_WEIGHTS, filename="adapter_model.bin", use_auth_token=HF_TOKEN |
|
) |
|
if device == "cuda": |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, load_in_8bit=True, device_map="auto", torch_dtype=torch.float16 |
|
) |
|
elif device == "mps": |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map={"": device}, |
|
load_in_8bit=True, |
|
torch_dtype=torch.float16, |
|
) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map={"": device}, |
|
load_in_8bit=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
config = LoraConfig.from_pretrained(resume_from_checkpoint) |
|
model = get_peft_model(model, config) |
|
adapters_weights = torch.load(checkpoint_name) |
|
set_peft_model_state_dict(model, adapters_weights) |
|
raise_warning_for_old_weights(BASE_MODEL, model) |
|
compress_module(model, device) |
|
|
|
|
|
|
|
|
|
def generate_prompt(instruction: str, input: Optional[str] = None): |
|
if input: |
|
if PROMPT_LANG == "ja": |
|
return f"ไปฅไธใฏใฟในใฏใ่ชฌๆใใๆ็คบใจใใใชใๆ่ใ้ฉ็จใใๅ
ฅๅใฎ็ตใฟๅใใใงใใ\n\n### ๆ็คบ:\n{instruction}\n\n### ๅ
ฅๅ:\n{input}\n\n### Response:\n" |
|
elif PROMPT_LANG == "en": |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Input: |
|
{input} |
|
### Response:""" |
|
else: |
|
raise ValueError("PROMPT_LANG") |
|
else: |
|
if PROMPT_LANG == "ja": |
|
return f"ไปฅไธใฏใฟในใฏใ่ชฌๆใใๆ็คบใจใใใชใๆ่ใ้ฉ็จใใๅ
ฅๅใฎ็ตใฟๅใใใงใใ\n\n### ๆ็คบ:\n{instruction}\n\n### ่ฟ็ญ:\n" |
|
elif PROMPT_LANG == "en": |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Response:""" |
|
else: |
|
raise ValueError("PROMPT_LANG") |
|
|
|
|
|
if device != "cpu": |
|
model.half() |
|
model.eval() |
|
if torch.__version__ >= "2": |
|
model = torch.compile(model) |
|
|
|
|
|
def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs): |
|
current_hour = now.strftime("%Y-%m-%d_%H") |
|
file_name = f"prompts_{LORA_WEIGHTS.split('/')[-1]}_{current_hour}.jsonl" |
|
|
|
if repo is not None: |
|
repo.git_pull(rebase=True) |
|
with open(os.path.join(LOCAL_DIR, file_name), "a", encoding="utf-8") as f: |
|
json.dump( |
|
{ |
|
"inputs": inputs, |
|
"outputs": outputs, |
|
"generate_kwargs": generate_kwargs, |
|
}, |
|
f, |
|
ensure_ascii=False, |
|
) |
|
f.write("\n") |
|
repo.push_to_hub() |
|
|
|
|
|
|
|
|
|
def evaluate( |
|
instruction, |
|
input=None, |
|
temperature=0.7, |
|
max_tokens=384, |
|
repetition_penalty=1.0, |
|
): |
|
num_beams: int = 1 |
|
top_p: float = 0.75 |
|
top_k: int = 40 |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
if len(inputs["input_ids"][0]) > max_tokens + 10: |
|
if HF_TOKEN and DATASET_REPOSITORY: |
|
try: |
|
now = datetime.datetime.now() |
|
current_time = now.strftime("%Y-%m-%d %H:%M:%S") |
|
print(f"[{current_time}] Pushing prompt and completion to the Hub") |
|
save_inputs_and_outputs( |
|
now, |
|
prompt, |
|
"", |
|
{ |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"num_beams": num_beams, |
|
"max_tokens": max_tokens, |
|
"repetition_penalty": repetition_penalty, |
|
}, |
|
) |
|
except Exception as e: |
|
print(e) |
|
return ( |
|
f"please reduce the input length. Currently, {len(inputs['input_ids'][0])} tokens are used.", |
|
gr.update(interactive=True), |
|
gr.update(interactive=True), |
|
) |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
num_beams=num_beams, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token=tokenizer.eos_token_id, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_tokens - len(input_ids), |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s, skip_special_tokens=True) |
|
if prompt.endswith("Response:"): |
|
output = output.split("### Response:")[1].strip() |
|
elif prompt.endswith("่ฟ็ญ:"): |
|
output = output.split("### ่ฟ็ญ:")[1].strip() |
|
else: |
|
raise ValueError(f"No valid prompt ends. {prompt}") |
|
if HF_TOKEN and DATASET_REPOSITORY: |
|
try: |
|
now = datetime.datetime.now() |
|
current_time = now.strftime("%Y-%m-%d %H:%M:%S") |
|
print(f"[{current_time}] Pushing prompt and completion to the Hub") |
|
save_inputs_and_outputs( |
|
now, |
|
prompt, |
|
output, |
|
{ |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"num_beams": num_beams, |
|
"max_tokens": max_tokens, |
|
"repetition_penalty": repetition_penalty, |
|
}, |
|
) |
|
except Exception as e: |
|
print(e) |
|
return output, gr.update(interactive=True), gr.update(interactive=True) |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value=""), gr.update(value=""), gr.update(value="") |
|
|
|
|
|
def no_interactive() -> Tuple[gr.Request, gr.Request]: |
|
return gr.update(interactive=False), gr.update(interactive=False) |
|
|
|
|
|
title = """<h1 align="center">LLaMA-13B Japanese LoRA</h1>""" |
|
|
|
theme = gr.themes.Default(primary_hue="green") |
|
description = ( |
|
"The official demo for **[izumi-lab/llama-13b-japanese-lora-v0-1ep](https://huggingface.co/izumi-lab/llama-13b-japanese-lora-v0-1ep)**. " |
|
"It is a 13B-parameter LLaMA model finetuned to follow instructions. " |
|
"It is trained on the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) dataset. " |
|
"For more information, please visit [the project's website](https://llm.msuzuki.me). " |
|
"This model can output up to 256 tokens, but the maximum number of tokens is 227 due to the GPU memory limit of HuggingFace Space. " |
|
"Currently temperature is ineffective because num_beam is set to 1 due to lack of GPU memory. " |
|
"It takes about **1 minute** to output. When access is concentrated, the operation may become slow." |
|
) |
|
with gr.Blocks( |
|
css="""#col_container { margin-left: auto; margin-right: auto;}""", |
|
theme=theme, |
|
) as demo: |
|
gr.HTML(title) |
|
gr.Markdown(description) |
|
with gr.Column(elem_id="col_container", visible=False) as main_block: |
|
with gr.Row(): |
|
with gr.Column(): |
|
instruction = gr.Textbox( |
|
lines=2, label="Instruction", placeholder="ใใใซใกใฏ" |
|
) |
|
inputs = gr.Textbox(lines=1, label="Input", placeholder="none") |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
clear_button = gr.Button("Clear").style(full_width=True) |
|
with gr.Column(scale=5): |
|
submit_button = gr.Button("Submit").style(full_width=True) |
|
outputs = gr.Textbox(lines=4, label="Output") |
|
|
|
|
|
with gr.Accordion("Parameters", open=True): |
|
temperature = gr.Slider( |
|
minimum=0, |
|
maximum=1.0, |
|
value=0.7, |
|
step=0.05, |
|
interactive=True, |
|
label="Temperature (Currently ineffective)", |
|
) |
|
max_tokens = gr.Slider( |
|
minimum=20, |
|
maximum=227, |
|
value=128, |
|
step=1, |
|
interactive=True, |
|
label="Max length (Pre-prompt + instruction + input + output))", |
|
) |
|
repetition_penalty = gr.Slider( |
|
minimum=1.0, |
|
maximum=5.0, |
|
value=1.2, |
|
step=0.1, |
|
interactive=True, |
|
label="Repetition penalty", |
|
) |
|
|
|
with gr.Column(elem_id="user_consent_container") as user_consent_block: |
|
|
|
gr.Markdown( |
|
""" |
|
## User Consent for Data Collection, Use, and Sharing: |
|
By using our app, you acknowledge and agree to the following terms regarding the data you provide: |
|
|
|
- **Collection**: We may collect inputs you type into our app. |
|
- **Use**: We may use the collected data for research purposes, to improve our services, and to develop new products or services, including commercial applications. |
|
- **Sharing and Publication**: Your input data may be published, shared with third parties, or used for analysis and reporting purposes. |
|
- **Data Retention**: We may retain your input data for as long as necessary. |
|
|
|
By continuing to use our app, you provide your explicit consent to the collection, use, and potential sharing of your data as described above. If you do not agree with our data collection, use, and sharing practices, please do not use our app. |
|
|
|
## ใใผใฟๅ้ใๅฉ็จใๅ
ฑๆใซ้ขใใใฆใผใถใผใฎๅๆ๏ผ |
|
ๆฌใขใใชใไฝฟ็จใใใใจใซใใใๆไพใใใใผใฟใซ้ขใใไปฅไธใฎๆกไปถใซๅๆใใใใฎใจใใพใ๏ผ |
|
|
|
- **ๅ้**: ๆฌใขใใชใซๅ
ฅๅใใใใใญในใใใผใฟใฏๅ้ใใใๅ ดๅใใใใพใใ |
|
- **ๅฉ็จ**: ๅ้ใใใใใผใฟใฏ็ ็ฉถใใๅ็จใขใใชใฑใผใทใงใณใๅซใใตใผใในใฎ้็บใซไฝฟ็จใใใๅ ดๅใใใใพใใ |
|
- **ๅ
ฑๆใใใณๅ
ฌ้**: ๅ
ฅๅใใผใฟใฏ็ฌฌไธ่
ใจๅ
ฑๆใใใใใๅๆใๅ
ฌ้ใฎ็ฎ็ใงไฝฟ็จใใใๅ ดๅใใใใพใใ |
|
- **ใใผใฟไฟๆ**: ๅ
ฅๅใใผใฟใฏๅฟ
่ฆใช้ใไฟๆใใใพใใ |
|
|
|
ๆฌใขใใชใๅผใ็ถใไฝฟ็จใใใใจใซใใใไธ่จใฎใใใซใใผใฟใฎๅ้ใปๅฉ็จใปๅ
ฑๆใซใคใใฆๅๆใใพใใใใผใฟใฎๅฉ็จๆนๆณใซๅๆใใชใๅ ดๅใฏใๆฌใขใใชใไฝฟ็จใใชใใงใใ ใใใ |
|
""" |
|
) |
|
accept_button = gr.Button("I Agree") |
|
|
|
def enable_inputs(): |
|
return user_consent_block.update(visible=False), main_block.update( |
|
visible=True |
|
) |
|
|
|
accept_button.click( |
|
fn=enable_inputs, |
|
inputs=[], |
|
outputs=[user_consent_block, main_block], |
|
queue=False, |
|
) |
|
inputs.submit(no_interactive, [], [submit_button, clear_button]) |
|
inputs.submit( |
|
evaluate, |
|
[instruction, inputs, temperature, max_tokens, repetition_penalty], |
|
[outputs, submit_button, clear_button], |
|
) |
|
submit_button.click(no_interactive, [], [submit_button, clear_button]) |
|
submit_button.click( |
|
evaluate, |
|
[instruction, inputs, temperature, max_tokens, repetition_penalty], |
|
[outputs, submit_button, clear_button], |
|
) |
|
clear_button.click(reset_textbox, [], [instruction, inputs, outputs], queue=False) |
|
|
|
demo.queue(max_size=20, concurrency_count=NUM_THREADS, api_open=False).launch( |
|
share=True, server_name="0.0.0.0", server_port=7860 |
|
) |
|
|