jadechoghari's picture
add model
9b9e0ee verified
raw
history blame
4.85 kB
# Author: Haohe Liu
# Email: haoheliu@gmail.com
# Date: 11 Feb 2023
import sys
sys.path.append("src")
import os
import wandb
import argparse
import yaml
import torch
from pytorch_lightning.strategies.ddp import DDPStrategy
from qa_mdt.audioldm_train.utilities.data.dataset import AudioDataset
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer
from qa_mdt.audioldm_train.modules.latent_encoder.autoencoder import AutoencoderKL
from pytorch_lightning.callbacks import ModelCheckpoint
from qa_mdt.audioldm_train.utilities.tools import get_restore_step
def listdir_nohidden(path):
for f in os.listdir(path):
if not f.startswith("."):
yield f
def main(configs, exp_group_name, exp_name):
if "precision" in configs.keys():
torch.set_float32_matmul_precision(configs["precision"])
batch_size = config_yaml["model"]["params"]["batchsize"]
log_path = config_yaml["log_directory"]
if "dataloader_add_ons" in configs["data"].keys():
dataloader_add_ons = configs["data"]["dataloader_add_ons"]
else:
dataloader_add_ons = []
dataset = AudioDataset(config_yaml, split="train", add_ons=dataloader_add_ons)
loader = DataLoader(
dataset, batch_size=batch_size, num_workers=8, pin_memory=True, shuffle=True
)
print(
"The length of the dataset is %s, the length of the dataloader is %s, the batchsize is %s"
% (len(dataset), len(loader), batch_size)
)
val_dataset = AudioDataset(config_yaml, split="val", add_ons=dataloader_add_ons)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
num_workers=8,
shuffle=True,
)
model = AutoencoderKL(
ddconfig=config_yaml["model"]["params"]["ddconfig"],
lossconfig=config_yaml["model"]["params"]["lossconfig"],
embed_dim=config_yaml["model"]["params"]["embed_dim"],
image_key=config_yaml["model"]["params"]["image_key"],
base_learning_rate=config_yaml["model"]["base_learning_rate"],
subband=config_yaml["model"]["params"]["subband"],
sampling_rate=config_yaml["preprocessing"]["audio"]["sampling_rate"],
)
try:
config_reload_from_ckpt = configs["reload_from_ckpt"]
except:
config_reload_from_ckpt = None
checkpoint_path = os.path.join(log_path, exp_group_name, exp_name, "checkpoints")
checkpoint_callback = ModelCheckpoint(
dirpath=checkpoint_path,
monitor="global_step",
mode="max",
filename="checkpoint-{global_step:.0f}",
every_n_train_steps=5000,
save_top_k=config_yaml["step"]["save_top_k"],
auto_insert_metric_name=False,
save_last=True,
)
wandb_path = os.path.join(log_path, exp_group_name, exp_name)
model.set_log_dir(log_path, exp_group_name, exp_name)
os.makedirs(checkpoint_path, exist_ok=True)
if len(os.listdir(checkpoint_path)) > 0:
print("Load checkpoint from path: %s" % checkpoint_path)
restore_step, n_step = get_restore_step(checkpoint_path)
resume_from_checkpoint = os.path.join(checkpoint_path, restore_step)
print("Resume from checkpoint", resume_from_checkpoint)
elif config_reload_from_ckpt is not None:
resume_from_checkpoint = config_reload_from_ckpt
print("Reload ckpt specified in the config file %s" % resume_from_checkpoint)
else:
print("Train from scratch")
resume_from_checkpoint = None
devices = torch.cuda.device_count()
wandb_logger = WandbLogger(
save_dir=wandb_path,
project=config_yaml["project"],
config=config_yaml,
name="%s/%s" % (exp_group_name, exp_name),
)
trainer = Trainer(
accelerator="gpu",
devices=devices,
logger=wandb_logger,
limit_val_batches=100,
callbacks=[checkpoint_callback],
strategy=DDPStrategy(find_unused_parameters=True),
val_check_interval=2000,
)
# TRAINING
trainer.fit(model, loader, val_loader, ckpt_path=resume_from_checkpoint)
# EVALUTION
# trainer.test(model, test_loader, ckpt_path=resume_from_checkpoint)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--autoencoder_config",
type=str,
required=True,
help="path to autoencoder config .yam",
)
args = parser.parse_args()
config_yaml = args.autoencoder_config
exp_name = os.path.basename(config_yaml.split(".")[0])
exp_group_name = os.path.basename(os.path.dirname(config_yaml))
config_yaml = os.path.join(config_yaml)
config_yaml = yaml.load(open(config_yaml, "r"), Loader=yaml.FullLoader)
main(config_yaml, exp_group_name, exp_name)