Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,398 Bytes
46ff99b 7e40a31 46ff99b 7e40a31 2879448 7e40a31 cfb23a7 7e40a31 46ff99b 7e40a31 7c3177c 7e40a31 9a68e0a 8575490 7e40a31 9a68e0a 7c3177c 7e40a31 7c3177c 9a68e0a 46ff99b 7e40a31 46ff99b 7e40a31 5e5405f 7e40a31 46ff99b 7e40a31 46ff99b 7e40a31 46ff99b 7e40a31 46ff99b 7e40a31 9a68e0a 46ff99b 9a68e0a 7c3177c 46ff99b 9a68e0a 46ff99b 7e40a31 9a68e0a 7e40a31 46ff99b 7e40a31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from typing import Tuple, Union
import gradio as gr
import numpy as np
import see2sound
import spaces
import torch
import yaml
import os
from huggingface_hub import snapshot_download
model_id = "rishitdagli/see-2-sound"
base_path = snapshot_download(repo_id=model_id)
with open("config.yaml", "r") as file:
data = yaml.safe_load(file)
data_str = yaml.dump(data)
updated_data_str = data_str.replace("checkpoints", base_path)
updated_data = yaml.safe_load(updated_data_str)
with open("config.yaml", "w") as file:
yaml.safe_dump(updated_data, file)
model = see2sound.See2Sound(config_path="config.yaml")
model.setup()
CACHE_DIR = "gradio_cached_examples"
#for local cache
def load_cached_example_outputs(example_index: int) -> Tuple[str, str]:
cached_dir = os.path.join(CACHE_DIR, str(example_index)) # Use the example index to find the directory
cached_image_path = os.path.join(cached_dir, "processed_image.png")
cached_audio_path = os.path.join(cached_dir, "audio.wav")
# Ensure cached files exist
if os.path.exists(cached_image_path) and os.path.exists(cached_audio_path):
return cached_image_path, cached_audio_path
else:
raise FileNotFoundError(f"Cached outputs not found for example {example_index}")
# Function to handle the example click, it now accepts arbitrary arguments
def on_example_click(*args, **kwargs):
return load_cached_example_outputs(1) # Always load example 1 for now
@spaces.GPU(duration=280)
@torch.no_grad()
def process_image(
image: str, num_audios: int, prompt: Union[str, None], steps: Union[int, None]
) -> Tuple[str, str]:
model.run(
path=image,
output_path="audio.wav",
num_audios=num_audios,
prompt=prompt,
steps=steps,
)
return image, "audio.wav"
description_text = """# SEE-2-SOUND 🔊 Demo
Official demo for *SEE-2-SOUND 🔊: Zero-Shot Spatial Environment-to-Spatial Sound*.
Please refer to our [paper](https://arxiv.org/abs/2406.06612), [project page](https://see2sound.github.io/), or [github](https://github.com/see2sound/see2sound) for more details.
> Note: You should make sure that your hardware supports spatial audio.
This demo allows you to generate spatial audio given an image. Upload an image (with an optional text prompt in the advanced settings) to geenrate spatial audio to accompany the image.
"""
css = """
h1 {
text-align: center;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(description_text)
with gr.Row():
with gr.Column():
image = gr.Image(
label="Select an image", sources=["upload", "webcam"], type="filepath"
)
with gr.Accordion("Advanced Settings", open=False):
steps = gr.Slider(
label="Diffusion Steps", minimum=1, maximum=1000, step=1, value=500
)
prompt = gr.Text(
label="Prompt",
show_label=True,
max_lines=1,
placeholder="Enter your prompt",
container=True,
)
num_audios = gr.Slider(
label="Number of Audios", minimum=1, maximum=10, step=1, value=3
)
submit_button = gr.Button("Submit")
with gr.Column():
processed_image = gr.Image(label="Processed Image")
generated_audio = gr.Audio(
label="Generated Audio",
show_download_button=True,
show_share_button=True,
waveform_options=gr.WaveformOptions(
waveform_color="#01C6FF",
waveform_progress_color="#0066B4",
show_controls=True,
),
)
gr.Examples(
examples=[["examples/1.png", 3, "A scenic mountain view", 500]], # Example input
inputs=[image, num_audios, prompt, steps],
outputs=[processed_image, generated_audio],
cache_examples=True, # Cache examples to avoid running the model
fn=on_example_click # Load the cached output when the example is clicked
)
gr.on(
triggers=[submit_button.click],
fn=process_image,
inputs=[image, num_audios, prompt, steps],
outputs=[processed_image, generated_audio],
)
if __name__ == "__main__":
demo.launch()
|