see-2-sound / app.py
jadechoghari's picture
Update app.py
5c18104 verified
from typing import Tuple, Union
import gradio as gr
import numpy as np
import see2sound
import spaces
import torch
import yaml
import os
from huggingface_hub import snapshot_download
model_id = "rishitdagli/see-2-sound"
base_path = snapshot_download(repo_id=model_id)
with open("config.yaml", "r") as file:
data = yaml.safe_load(file)
data_str = yaml.dump(data)
updated_data_str = data_str.replace("checkpoints", base_path)
updated_data = yaml.safe_load(updated_data_str)
with open("config.yaml", "w") as file:
yaml.safe_dump(updated_data, file)
model = see2sound.See2Sound(config_path="config.yaml")
model.setup()
CACHE_DIR = "gradio_cached_examples"
#for local cache
def load_cached_example_outputs(example_index: int) -> Tuple[str, str]:
cached_dir = os.path.join(CACHE_DIR, str(example_index)) # Use the example index to find the directory
cached_image_path = os.path.join(cached_dir, "processed_image.png")
cached_audio_path = os.path.join(cached_dir, "audio.wav")
# Ensure cached files exist
if os.path.exists(cached_image_path) and os.path.exists(cached_audio_path):
return cached_image_path, cached_audio_path
else:
raise FileNotFoundError(f"Cached outputs not found for example {example_index}")
# Function to handle the example click, based on index
def on_example_click(index: int, *args, **kwargs):
return load_cached_example_outputs(index)
# # to handle the example click, it now accepts arbitrary arguments
# def on_example_click(*args, **kwargs):
# return load_cached_example_outputs(1) # Always load example 1 for now
@spaces.GPU(duration=280)
@torch.no_grad()
def process_image(
image: str, num_audios: int, prompt: Union[str, None], steps: Union[int, None]
) -> Tuple[str, str]:
model.run(
path=image,
output_path="audio.wav",
num_audios=num_audios,
prompt=prompt,
steps=steps,
)
return image, "audio.wav"
description_text = """# SEE-2-SOUND πŸ”Š Demo
Official demo for *SEE-2-SOUND πŸ”Š: Zero-Shot Spatial Environment-to-Spatial Sound*.
Please refer to our [paper](https://arxiv.org/abs/2406.06612), [project page](https://see2sound.github.io/), or [github](https://github.com/see2sound/see2sound) for more details.
> Note: You should make sure that your hardware supports spatial audio.
This demo allows you to generate spatial audio given an image. Upload an image (with an optional text prompt in the advanced settings) to geenrate spatial audio to accompany the image.
This forked space contains cached examples.
Author: [@Rishit-dagli](https://github.com/Rishit-dagli) (University of Toronto) *et al*
cc [@jadechoghari](https://github.com/jadechoghari) for HF/Gradio Issues.
"""
css = """
h1 {
text-align: center;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(description_text)
with gr.Row():
with gr.Column():
image = gr.Image(
label="Select an image", sources=["upload", "webcam"], type="filepath"
)
with gr.Accordion("Advanced Settings", open=False):
steps = gr.Slider(
label="Diffusion Steps", minimum=1, maximum=1000, step=1, value=500
)
prompt = gr.Text(
label="Prompt",
show_label=True,
max_lines=1,
placeholder="Enter your prompt",
container=True,
)
num_audios = gr.Slider(
label="Number of Audios", minimum=1, maximum=10, step=1, value=3
)
submit_button = gr.Button("Submit")
with gr.Column():
processed_image = gr.Image(label="Processed Image")
processed_video = gr.Video(label="Processed Video", visible=False) # Initially hidden
generated_audio = gr.Audio(
label="Generated Audio",
show_download_button=True,
show_share_button=True,
waveform_options=gr.WaveformOptions(
waveform_color="#01C6FF",
waveform_progress_color="#0066B4",
show_controls=True,
),
)
# Example inputs, the last two are videos
example = [
["examples/1.png"],
["examples/2.png"],
["examples/3.png"],
["examples/4.png"],
["examples/5.png"],
["examples/6.png"],
["examples/7.png"],
["examples/8.png"],
["examples/9.png"]
]
def update_examples(index):
example_index = int(index) # Convert index to integer for use
return load_cached_example_outputs(example_index)
gr.Examples(
examples=example, # Example inputs
inputs=[image, num_audios, prompt, steps],
outputs=[processed_image, generated_audio],
cache_examples=True, # Cache examples to avoid running the model
fn=lambda *args: on_example_click(int(args[0].split('/')[-1][0])) # Extract example index from image path
)
gr.on(
triggers=[submit_button.click],
fn=process_image,
inputs=[image, num_audios, prompt, steps],
outputs=[processed_image, generated_audio],
)
if __name__ == "__main__":
demo.launch(debug=True)