# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from enum import Enum from typing import Any, Dict, Optional import torch from torch import Tensor from torchmetrics import Metric, MetricCollection from torchmetrics.classification import MulticlassAccuracy from torchmetrics.utilities.data import dim_zero_cat, select_topk logger = logging.getLogger("dinov2") class MetricType(Enum): MEAN_ACCURACY = "mean_accuracy" MEAN_PER_CLASS_ACCURACY = "mean_per_class_accuracy" PER_CLASS_ACCURACY = "per_class_accuracy" IMAGENET_REAL_ACCURACY = "imagenet_real_accuracy" @property def accuracy_averaging(self): return getattr(AccuracyAveraging, self.name, None) def __str__(self): return self.value class AccuracyAveraging(Enum): MEAN_ACCURACY = "micro" MEAN_PER_CLASS_ACCURACY = "macro" PER_CLASS_ACCURACY = "none" def __str__(self): return self.value def build_metric( metric_type: MetricType, *, num_classes: int, ks: Optional[tuple] = None ): if metric_type.accuracy_averaging is not None: return build_topk_accuracy_metric( average_type=metric_type.accuracy_averaging, num_classes=num_classes, ks=(1, 5) if ks is None else ks, ) elif metric_type == MetricType.IMAGENET_REAL_ACCURACY: return build_topk_imagenet_real_accuracy_metric( num_classes=num_classes, ks=(1, 5) if ks is None else ks, ) raise ValueError(f"Unknown metric type {metric_type}") def build_topk_accuracy_metric( average_type: AccuracyAveraging, num_classes: int, ks: tuple = (1, 5) ): metrics: Dict[str, Metric] = { f"top-{k}": MulticlassAccuracy( top_k=k, num_classes=int(num_classes), average=average_type.value ) for k in ks } return MetricCollection(metrics) def build_topk_imagenet_real_accuracy_metric(num_classes: int, ks: tuple = (1, 5)): metrics: Dict[str, Metric] = { f"top-{k}": ImageNetReaLAccuracy(top_k=k, num_classes=int(num_classes)) for k in ks } return MetricCollection(metrics) class ImageNetReaLAccuracy(Metric): is_differentiable: bool = False higher_is_better: Optional[bool] = None full_state_update: bool = False def __init__( self, num_classes: int, top_k: int = 1, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.num_classes = num_classes self.top_k = top_k self.add_state("tp", [], dist_reduce_fx="cat") def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore # preds [B, D] # target [B, A] # preds_oh [B, D] with 0 and 1 # select top K highest probabilities, use one hot representation preds_oh = select_topk(preds, self.top_k) # target_oh [B, D + 1] with 0 and 1 target_oh = torch.zeros( (preds_oh.shape[0], preds_oh.shape[1] + 1), device=target.device, dtype=torch.int32, ) target = target.long() # for undefined targets (-1) use a fake value `num_classes` target[target == -1] = self.num_classes # fill targets, use one hot representation target_oh.scatter_(1, target, 1) # target_oh [B, D] (remove the fake target at index `num_classes`) target_oh = target_oh[:, :-1] # tp [B] with 0 and 1 tp = (preds_oh * target_oh == 1).sum(dim=1) # at least one match between prediction and target tp.clip_(max=1) # ignore instances where no targets are defined mask = target_oh.sum(dim=1) > 0 tp = tp[mask] self.tp.append(tp) # type: ignore def compute(self) -> Tensor: tp = dim_zero_cat(self.tp) # type: ignore return tp.float().mean()