# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/main/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py import logging import math from functools import partial from typing import Callable, Sequence, Tuple, Union import torch import torch.nn as nn import torch.utils.checkpoint from dinov2.layers import MemEffAttention, Mlp from dinov2.layers import NestedTensorBlock as Block from dinov2.layers import PatchEmbed, SwiGLUFFNFused from torch.nn.init import trunc_normal_ logger = logging.getLogger("dinov2") def named_apply( fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False ) -> nn.Module: if not depth_first and include_root: fn(module=module, name=name) for child_name, child_module in module.named_children(): child_name = ".".join((name, child_name)) if name else child_name named_apply( fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True, ) if depth_first and include_root: fn(module=module, name=name) return module class BlockChunk(nn.ModuleList): def forward(self, x): for b in self: x = b(x) return x class DinoVisionTransformer(nn.Module): def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, ffn_bias=True, proj_bias=True, drop_path_rate=0.0, drop_path_uniform=False, init_values=None, # for layerscale: None or 0 => no layerscale embed_layer=PatchEmbed, act_layer=nn.GELU, block_fn=Block, ffn_layer="mlp", block_chunks=1, num_register_tokens=0, interpolate_antialias=False, interpolate_offset=0.1, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True proj_bias (bool): enable bias for proj in attn if True ffn_bias (bool): enable bias for ffn if True drop_path_rate (float): stochastic depth rate drop_path_uniform (bool): apply uniform drop rate across blocks weight_init (str): weight init scheme init_values (float): layer-scale init values embed_layer (nn.Module): patch embedding layer act_layer (nn.Module): MLP activation layer block_fn (nn.Module): transformer block class ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" block_chunks: (int) split block sequence into block_chunks units for FSDP wrap num_register_tokens: (int) number of extra cls tokens (so-called "registers") interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings """ super().__init__() norm_layer = partial(nn.LayerNorm, eps=1e-6) self.num_features = self.embed_dim = ( embed_dim # num_features for consistency with other models ) self.num_tokens = 1 self.n_blocks = depth self.num_heads = num_heads self.patch_size = patch_size self.num_register_tokens = num_register_tokens self.interpolate_antialias = interpolate_antialias self.interpolate_offset = interpolate_offset self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter( torch.zeros(1, num_patches + self.num_tokens, embed_dim) ) assert num_register_tokens >= 0 self.register_tokens = ( nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None ) if drop_path_uniform is True: dpr = [drop_path_rate] * depth else: dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule if ffn_layer == "mlp": logger.info("using MLP layer as FFN") ffn_layer = Mlp elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": logger.info("using SwiGLU layer as FFN") ffn_layer = SwiGLUFFNFused elif ffn_layer == "identity": logger.info("using Identity layer as FFN") def f(*args, **kwargs): return nn.Identity() ffn_layer = f else: raise NotImplementedError blocks_list = [ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, ffn_bias=ffn_bias, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, ffn_layer=ffn_layer, init_values=init_values, ) for i in range(depth) ] if block_chunks > 0: self.chunked_blocks = True chunked_blocks = [] chunksize = depth // block_chunks for i in range(0, depth, chunksize): # this is to keep the block index consistent if we chunk the block list chunked_blocks.append( [nn.Identity()] * i + blocks_list[i : i + chunksize] ) self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) else: self.chunked_blocks = False self.blocks = nn.ModuleList(blocks_list) self.norm = norm_layer(embed_dim) self.head = nn.Identity() self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) self.init_weights() def init_weights(self): trunc_normal_(self.pos_embed, std=0.02) nn.init.normal_(self.cls_token, std=1e-6) if self.register_tokens is not None: nn.init.normal_(self.register_tokens, std=1e-6) named_apply(init_weights_vit_timm, self) def interpolate_pos_encoding(self, x, w, h): previous_dtype = x.dtype npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == h: return self.pos_embed pos_embed = self.pos_embed.float() class_pos_embed = pos_embed[:, 0] patch_pos_embed = pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_size h0 = h // self.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 # DINOv2 with register modify the interpolate_offset from 0.1 to 0.0 w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset # w0, h0 = w0 + 0.1, h0 + 0.1 sqrt_N = math.sqrt(N) sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute( 0, 3, 1, 2 ), scale_factor=(sx, sy), # (int(w0), int(h0)), # to solve the upsampling shape issue mode="bicubic", antialias=self.interpolate_antialias, ) assert int(w0) == patch_pos_embed.shape[-2] assert int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to( previous_dtype ) def prepare_tokens_with_masks(self, x, masks=None): B, nc, w, h = x.shape x = self.patch_embed(x) if masks is not None: x = torch.where( masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x ) x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + self.interpolate_pos_encoding(x, w, h) if self.register_tokens is not None: x = torch.cat( ( x[:, :1], self.register_tokens.expand(x.shape[0], -1, -1), x[:, 1:], ), dim=1, ) return x def forward_features_list(self, x_list, masks_list): x = [ self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list) ] for blk in self.blocks: x = blk(x) all_x = x output = [] for x, masks in zip(all_x, masks_list): x_norm = self.norm(x) output.append( { "x_norm_clstoken": x_norm[:, 0], "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], "x_prenorm": x, "masks": masks, } ) return output def forward_features(self, x, masks=None): if isinstance(x, list): return self.forward_features_list(x, masks) x = self.prepare_tokens_with_masks(x, masks) for blk in self.blocks: x = blk(x) x_norm = self.norm(x) return { "x_norm_clstoken": x_norm[:, 0], "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], "x_prenorm": x, "masks": masks, } def _get_intermediate_layers_not_chunked(self, x, n=1): x = self.prepare_tokens_with_masks(x) # If n is an int, take the n last blocks. If it's a list, take them output, total_block_len = [], len(self.blocks) blocks_to_take = ( range(total_block_len - n, total_block_len) if isinstance(n, int) else n ) for i, blk in enumerate(self.blocks): x = blk(x) if i in blocks_to_take: output.append(x) assert len(output) == len( blocks_to_take ), f"only {len(output)} / {len(blocks_to_take)} blocks found" return output def _get_intermediate_layers_chunked(self, x, n=1): x = self.prepare_tokens_with_masks(x) output, i, total_block_len = [], 0, len(self.blocks[-1]) # If n is an int, take the n last blocks. If it's a list, take them blocks_to_take = ( range(total_block_len - n, total_block_len) if isinstance(n, int) else n ) for block_chunk in self.blocks: for blk in block_chunk[i:]: # Passing the nn.Identity() x = blk(x) if i in blocks_to_take: output.append(x) i += 1 assert len(output) == len( blocks_to_take ), f"only {len(output)} / {len(blocks_to_take)} blocks found" return output def get_intermediate_layers( self, x: torch.Tensor, n: Union[int, Sequence] = 1, # Layers or n last layers to take reshape: bool = False, return_class_token: bool = False, norm=True, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: if self.chunked_blocks: outputs = self._get_intermediate_layers_chunked(x, n) else: outputs = self._get_intermediate_layers_not_chunked(x, n) if norm: outputs = [self.norm(out) for out in outputs] class_tokens = [out[:, 0] for out in outputs] outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs] if reshape: B, _, w, h = x.shape outputs = [ out.reshape(B, w // self.patch_size, h // self.patch_size, -1) .permute(0, 3, 1, 2) .contiguous() for out in outputs ] if return_class_token: return tuple(zip(outputs, class_tokens)) return tuple(outputs) def forward(self, *args, is_training=False, **kwargs): ret = self.forward_features(*args, **kwargs) if is_training: return ret else: return self.head(ret["x_norm_clstoken"]) def init_weights_vit_timm(module: nn.Module, name: str = ""): """ViT weight initialization, original timm impl (for reproducibility)""" if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) def vit_small(patch_size=16, num_register_tokens=0, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model def vit_base(patch_size=16, num_register_tokens=0, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model def vit_large(patch_size=16, num_register_tokens=0, **kwargs): model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs): """ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 """ model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1536, depth=40, num_heads=24, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model