Upload 3 files
Browse files- app.py +66 -32
- requirements.txt +0 -0
app.py
CHANGED
@@ -10,53 +10,69 @@ from langchain.prompts import PromptTemplate
|
|
10 |
from dotenv import load_dotenv
|
11 |
import os
|
12 |
|
13 |
-
# Load
|
14 |
load_dotenv()
|
15 |
|
16 |
# Fetch the Google API key from the .env file
|
17 |
api_key = os.getenv("GOOGLE_API_KEY")
|
18 |
|
|
|
19 |
st.set_page_config(page_title="Document Genie", layout="wide")
|
20 |
|
|
|
21 |
st.markdown("""
|
22 |
-
## Document Genie: Get
|
23 |
|
24 |
-
This chatbot
|
25 |
|
26 |
### How It Works
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
1. **Upload Your Documents**: The system accepts multiple PDF files at once, analyzing the content to provide comprehensive insights.
|
31 |
-
|
32 |
-
2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
|
33 |
""")
|
34 |
|
35 |
def get_pdf_text(pdf_docs):
|
|
|
|
|
|
|
36 |
text = ""
|
37 |
for pdf in pdf_docs:
|
38 |
pdf_reader = PdfReader(pdf)
|
39 |
for page in pdf_reader.pages:
|
40 |
-
|
|
|
|
|
41 |
return text
|
42 |
|
43 |
def get_text_chunks(text):
|
|
|
|
|
|
|
44 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
45 |
chunks = text_splitter.split_text(text)
|
46 |
return chunks
|
47 |
|
48 |
def get_vector_store(text_chunks, api_key):
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
prompt_template = """
|
55 |
-
Answer the question as detailed as possible from the provided context
|
56 |
-
|
57 |
-
Context:\n
|
58 |
-
Question
|
59 |
-
|
60 |
Answer:
|
61 |
"""
|
62 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key)
|
@@ -65,30 +81,48 @@ def get_conversational_chain():
|
|
65 |
return chain
|
66 |
|
67 |
def user_input(user_question, api_key):
|
|
|
|
|
|
|
68 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def main():
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
|
79 |
|
80 |
-
if user_question: #
|
81 |
user_input(user_question, api_key)
|
82 |
|
83 |
with st.sidebar:
|
84 |
st.title("Menu:")
|
85 |
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
if __name__ == "__main__":
|
94 |
main()
|
|
|
10 |
from dotenv import load_dotenv
|
11 |
import os
|
12 |
|
13 |
+
# Load environment variables from .env file
|
14 |
load_dotenv()
|
15 |
|
16 |
# Fetch the Google API key from the .env file
|
17 |
api_key = os.getenv("GOOGLE_API_KEY")
|
18 |
|
19 |
+
# Set the page configuration for the Streamlit app
|
20 |
st.set_page_config(page_title="Document Genie", layout="wide")
|
21 |
|
22 |
+
# Header and Instructions
|
23 |
st.markdown("""
|
24 |
+
## Document Genie: Get Instant Insights from Your Documents
|
25 |
|
26 |
+
This chatbot utilizes the Retrieval-Augmented Generation (RAG) framework with Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by segmenting them into chunks, creating a searchable vector store, and generating precise answers to your questions. This method ensures high-quality, contextually relevant responses for an efficient user experience.
|
27 |
|
28 |
### How It Works
|
29 |
|
30 |
+
1. **Upload Your Documents**: You can upload multiple PDF files simultaneously for comprehensive analysis.
|
31 |
+
2. **Ask a Question**: After processing the documents, type your question related to the content of your uploaded documents for a detailed answer.
|
|
|
|
|
|
|
32 |
""")
|
33 |
|
34 |
def get_pdf_text(pdf_docs):
|
35 |
+
"""
|
36 |
+
Extract text from uploaded PDF documents.
|
37 |
+
"""
|
38 |
text = ""
|
39 |
for pdf in pdf_docs:
|
40 |
pdf_reader = PdfReader(pdf)
|
41 |
for page in pdf_reader.pages:
|
42 |
+
page_text = page.extract_text()
|
43 |
+
if page_text:
|
44 |
+
text += page_text
|
45 |
return text
|
46 |
|
47 |
def get_text_chunks(text):
|
48 |
+
"""
|
49 |
+
Split text into manageable chunks for processing.
|
50 |
+
"""
|
51 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
52 |
chunks = text_splitter.split_text(text)
|
53 |
return chunks
|
54 |
|
55 |
def get_vector_store(text_chunks, api_key):
|
56 |
+
"""
|
57 |
+
Create and save a FAISS vector store from text chunks.
|
58 |
+
"""
|
59 |
+
try:
|
60 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
61 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
62 |
+
vector_store.save_local("faiss_index")
|
63 |
+
st.success("FAISS index created and saved successfully.")
|
64 |
+
except Exception as e:
|
65 |
+
st.error(f"Error creating FAISS index: {e}")
|
66 |
+
|
67 |
+
def get_conversational_chain(api_key):
|
68 |
+
"""
|
69 |
+
Set up the conversational chain using the Gemini-PRO model.
|
70 |
+
"""
|
71 |
prompt_template = """
|
72 |
+
Answer the question as detailed as possible from the provided context. If the answer is not in the provided context,
|
73 |
+
say "Answer is not available in the context". Do not provide incorrect information.\n\n
|
74 |
+
Context:\n{context}\n
|
75 |
+
Question:\n{question}\n
|
|
|
76 |
Answer:
|
77 |
"""
|
78 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key)
|
|
|
81 |
return chain
|
82 |
|
83 |
def user_input(user_question, api_key):
|
84 |
+
"""
|
85 |
+
Handle user input and generate a response from the chatbot.
|
86 |
+
"""
|
87 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
88 |
+
|
89 |
+
try:
|
90 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
91 |
+
docs = new_db.similarity_search(user_question)
|
92 |
+
chain = get_conversational_chain(api_key)
|
93 |
+
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
94 |
+
st.write("Reply:", response["output_text"])
|
95 |
+
except ValueError as e:
|
96 |
+
st.error(f"Error loading FAISS index or generating response: {e}")
|
97 |
|
98 |
def main():
|
99 |
+
"""
|
100 |
+
Main function to run the Streamlit app.
|
101 |
+
"""
|
102 |
+
st.header("AI Chatbot 💁")
|
103 |
|
104 |
user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
|
105 |
|
106 |
+
if user_question: # Trigger user input function only if there's a question
|
107 |
user_input(user_question, api_key)
|
108 |
|
109 |
with st.sidebar:
|
110 |
st.title("Menu:")
|
111 |
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
|
112 |
+
|
113 |
+
if st.button("Submit & Process", key="process_button"):
|
114 |
+
if not api_key:
|
115 |
+
st.error("Google API key is missing. Please add it to the .env file.")
|
116 |
+
return
|
117 |
+
|
118 |
+
if pdf_docs:
|
119 |
+
with st.spinner("Processing..."):
|
120 |
+
raw_text = get_pdf_text(pdf_docs)
|
121 |
+
text_chunks = get_text_chunks(raw_text)
|
122 |
+
get_vector_store(text_chunks, api_key)
|
123 |
+
st.success("Processing complete. You can now ask questions based on the uploaded documents.")
|
124 |
+
else:
|
125 |
+
st.error("No PDF files uploaded. Please upload at least one PDF file to proceed.")
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
main()
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|