jarif commited on
Commit
3282695
1 Parent(s): e7ba5ae

Upload 3 files

Browse files
Files changed (2) hide show
  1. app.py +66 -32
  2. requirements.txt +0 -0
app.py CHANGED
@@ -10,53 +10,69 @@ from langchain.prompts import PromptTemplate
10
  from dotenv import load_dotenv
11
  import os
12
 
13
- # Load the environment variables from .env file
14
  load_dotenv()
15
 
16
  # Fetch the Google API key from the .env file
17
  api_key = os.getenv("GOOGLE_API_KEY")
18
 
 
19
  st.set_page_config(page_title="Document Genie", layout="wide")
20
 
 
21
  st.markdown("""
22
- ## Document Genie: Get instant insights from your Documents
23
 
24
- This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience.
25
 
26
  ### How It Works
27
 
28
- Follow these simple steps to interact with the chatbot:
29
-
30
- 1. **Upload Your Documents**: The system accepts multiple PDF files at once, analyzing the content to provide comprehensive insights.
31
-
32
- 2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
33
  """)
34
 
35
  def get_pdf_text(pdf_docs):
 
 
 
36
  text = ""
37
  for pdf in pdf_docs:
38
  pdf_reader = PdfReader(pdf)
39
  for page in pdf_reader.pages:
40
- text += page.extract_text()
 
 
41
  return text
42
 
43
  def get_text_chunks(text):
 
 
 
44
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
45
  chunks = text_splitter.split_text(text)
46
  return chunks
47
 
48
  def get_vector_store(text_chunks, api_key):
49
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
50
- vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
51
- vector_store.save_local("faiss_index")
52
-
53
- def get_conversational_chain():
 
 
 
 
 
 
 
 
 
 
54
  prompt_template = """
55
- Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
56
- provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
57
- Context:\n {context}?\n
58
- Question: \n{question}\n
59
-
60
  Answer:
61
  """
62
  model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key)
@@ -65,30 +81,48 @@ def get_conversational_chain():
65
  return chain
66
 
67
  def user_input(user_question, api_key):
 
 
 
68
  embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
69
- new_db = FAISS.load_local("faiss_index", embeddings)
70
- docs = new_db.similarity_search(user_question)
71
- chain = get_conversational_chain()
72
- response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
73
- st.write("Reply: ", response["output_text"])
 
 
 
 
74
 
75
  def main():
76
- st.header("AI clone chatbot💁")
 
 
 
77
 
78
  user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
79
 
80
- if user_question: # Only check for the user question now
81
  user_input(user_question, api_key)
82
 
83
  with st.sidebar:
84
  st.title("Menu:")
85
  pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
86
- if st.button("Submit & Process", key="process_button"): # No need to check for API key here
87
- with st.spinner("Processing..."):
88
- raw_text = get_pdf_text(pdf_docs)
89
- text_chunks = get_text_chunks(raw_text)
90
- get_vector_store(text_chunks, api_key)
91
- st.success("Done")
 
 
 
 
 
 
 
 
92
 
93
  if __name__ == "__main__":
94
  main()
 
10
  from dotenv import load_dotenv
11
  import os
12
 
13
+ # Load environment variables from .env file
14
  load_dotenv()
15
 
16
  # Fetch the Google API key from the .env file
17
  api_key = os.getenv("GOOGLE_API_KEY")
18
 
19
+ # Set the page configuration for the Streamlit app
20
  st.set_page_config(page_title="Document Genie", layout="wide")
21
 
22
+ # Header and Instructions
23
  st.markdown("""
24
+ ## Document Genie: Get Instant Insights from Your Documents
25
 
26
+ This chatbot utilizes the Retrieval-Augmented Generation (RAG) framework with Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by segmenting them into chunks, creating a searchable vector store, and generating precise answers to your questions. This method ensures high-quality, contextually relevant responses for an efficient user experience.
27
 
28
  ### How It Works
29
 
30
+ 1. **Upload Your Documents**: You can upload multiple PDF files simultaneously for comprehensive analysis.
31
+ 2. **Ask a Question**: After processing the documents, type your question related to the content of your uploaded documents for a detailed answer.
 
 
 
32
  """)
33
 
34
  def get_pdf_text(pdf_docs):
35
+ """
36
+ Extract text from uploaded PDF documents.
37
+ """
38
  text = ""
39
  for pdf in pdf_docs:
40
  pdf_reader = PdfReader(pdf)
41
  for page in pdf_reader.pages:
42
+ page_text = page.extract_text()
43
+ if page_text:
44
+ text += page_text
45
  return text
46
 
47
  def get_text_chunks(text):
48
+ """
49
+ Split text into manageable chunks for processing.
50
+ """
51
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
52
  chunks = text_splitter.split_text(text)
53
  return chunks
54
 
55
  def get_vector_store(text_chunks, api_key):
56
+ """
57
+ Create and save a FAISS vector store from text chunks.
58
+ """
59
+ try:
60
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
61
+ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
62
+ vector_store.save_local("faiss_index")
63
+ st.success("FAISS index created and saved successfully.")
64
+ except Exception as e:
65
+ st.error(f"Error creating FAISS index: {e}")
66
+
67
+ def get_conversational_chain(api_key):
68
+ """
69
+ Set up the conversational chain using the Gemini-PRO model.
70
+ """
71
  prompt_template = """
72
+ Answer the question as detailed as possible from the provided context. If the answer is not in the provided context,
73
+ say "Answer is not available in the context". Do not provide incorrect information.\n\n
74
+ Context:\n{context}\n
75
+ Question:\n{question}\n
 
76
  Answer:
77
  """
78
  model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key)
 
81
  return chain
82
 
83
  def user_input(user_question, api_key):
84
+ """
85
+ Handle user input and generate a response from the chatbot.
86
+ """
87
  embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
88
+
89
+ try:
90
+ new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
91
+ docs = new_db.similarity_search(user_question)
92
+ chain = get_conversational_chain(api_key)
93
+ response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
94
+ st.write("Reply:", response["output_text"])
95
+ except ValueError as e:
96
+ st.error(f"Error loading FAISS index or generating response: {e}")
97
 
98
  def main():
99
+ """
100
+ Main function to run the Streamlit app.
101
+ """
102
+ st.header("AI Chatbot 💁")
103
 
104
  user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
105
 
106
+ if user_question: # Trigger user input function only if there's a question
107
  user_input(user_question, api_key)
108
 
109
  with st.sidebar:
110
  st.title("Menu:")
111
  pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
112
+
113
+ if st.button("Submit & Process", key="process_button"):
114
+ if not api_key:
115
+ st.error("Google API key is missing. Please add it to the .env file.")
116
+ return
117
+
118
+ if pdf_docs:
119
+ with st.spinner("Processing..."):
120
+ raw_text = get_pdf_text(pdf_docs)
121
+ text_chunks = get_text_chunks(raw_text)
122
+ get_vector_store(text_chunks, api_key)
123
+ st.success("Processing complete. You can now ask questions based on the uploaded documents.")
124
+ else:
125
+ st.error("No PDF files uploaded. Please upload at least one PDF file to proceed.")
126
 
127
  if __name__ == "__main__":
128
  main()
requirements.txt CHANGED
Binary files a/requirements.txt and b/requirements.txt differ