canny_coyo1m / app.py
pcuenq's picture
pcuenq HF staff
resize image to 512x512
da1c586
raw
history blame
2.64 kB
import gradio as gr
import jax
import numpy as np
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import cv2
def create_key(seed=0):
return jax.random.PRNGKey(seed)
def crop_and_resize(pilimg, size=512):
"""
Will downsample or upsample as necessary.
"""
width, height = pilimg.size
minsize = min(width, height)
x0 = (width - height) // 2 if width > height else 0
y0 = (height - width) // 2 if height > width else 0
pilimg = pilimg.crop((x0, y0, x0 + minsize, y0 + minsize))
pilimg = pilimg.resize((size, size), resample=Image.LANCZOS)
return pilimg
def canny_filter(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
edges_image = cv2.Canny(blurred_image, 50, 150)
return edges_image
# load control net and stable diffusion v1-5
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"jax-diffusers-event/canny-coyo1m", dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
)
def infer(prompts, negative_prompts, image):
params["controlnet"] = controlnet_params
# image is a numpy array, we'll convert to PIL to resize and back to numpy
image = Image.fromarray(image)
image = crop_and_resize(image)
image = np.array(image)
num_samples = 1 #jax.device_count()
rng = create_key(0)
rng = jax.random.split(rng, jax.device_count())
im = canny_filter(image)
canny_image = Image.fromarray(im)
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return output_images
gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery").launch()