Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
import numpy as np | |
import jax.numpy as jnp | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from PIL import Image | |
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel | |
import cv2 | |
def create_key(seed=0): | |
return jax.random.PRNGKey(seed) | |
def crop_and_resize(pilimg, size=512): | |
""" | |
Will downsample or upsample as necessary. | |
""" | |
width, height = pilimg.size | |
minsize = min(width, height) | |
x0 = (width - height) // 2 if width > height else 0 | |
y0 = (height - width) // 2 if height > width else 0 | |
pilimg = pilimg.crop((x0, y0, x0 + minsize, y0 + minsize)) | |
pilimg = pilimg.resize((size, size), resample=Image.LANCZOS) | |
return pilimg | |
def canny_filter(image): | |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0) | |
edges_image = cv2.Canny(blurred_image, 50, 150) | |
return edges_image | |
# load control net and stable diffusion v1-5 | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
"jax-diffusers-event/canny-coyo1m", dtype=jnp.bfloat16 | |
) | |
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 | |
) | |
def infer(prompts, negative_prompts, image): | |
params["controlnet"] = controlnet_params | |
# image is a numpy array, we'll convert to PIL to resize and back to numpy | |
image = Image.fromarray(image) | |
image = crop_and_resize(image) | |
image = np.array(image) | |
num_samples = 1 #jax.device_count() | |
rng = create_key(0) | |
rng = jax.random.split(rng, jax.device_count()) | |
im = canny_filter(image) | |
canny_image = Image.fromarray(im) | |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) | |
p_params = replicate(params) | |
prompt_ids = shard(prompt_ids) | |
negative_prompt_ids = shard(negative_prompt_ids) | |
processed_image = shard(processed_image) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=p_params, | |
prng_seed=rng, | |
num_inference_steps=50, | |
neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) | |
return output_images | |
gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery").launch() | |