Spaces:
Running
on
L40S
Running
on
L40S
File size: 9,653 Bytes
d69879c e123fec d69879c ea331ab d69879c ea331ab e123fec d69879c e123fec d69879c e123fec c2ac436 e123fec d69879c e123fec d69879c e123fec d69879c e123fec d69879c e123fec d69879c e123fec d69879c 22b2a6e e123fec d69879c e123fec d69879c e123fec d69879c 22b2a6e d69879c 22b2a6e e123fec d69879c e123fec 22b2a6e d69879c 22b2a6e e123fec d69879c e123fec d69879c e123fec d69879c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import logging
import hashlib
import os
import io
import asyncio
from async_lru import alru_cache
import base64
from queue import Queue
from typing import Dict, Any, List, Optional, Union
from functools import lru_cache
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from liveportrait.config.argument_config import ArgumentConfig
from liveportrait.utils.camera import get_rotation_matrix
from liveportrait.utils.io import resize_to_limit
from liveportrait.utils.crop import prepare_paste_back, paste_back, parse_bbox_from_landmark
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Global constants
DATA_ROOT = os.environ.get('DATA_ROOT', '/tmp/data')
MODELS_DIR = os.path.join(DATA_ROOT, "models")
def base64_data_uri_to_PIL_Image(base64_string: str) -> Image.Image:
"""
Convert a base64 data URI to a PIL Image.
Args:
base64_string (str): The base64 encoded image data.
Returns:
Image.Image: The decoded PIL Image.
"""
if ',' in base64_string:
base64_string = base64_string.split(',')[1]
img_data = base64.b64decode(base64_string)
return Image.open(io.BytesIO(img_data))
class Engine:
"""
The main engine class for FacePoke
"""
def __init__(self, live_portrait):
"""
Initialize the FacePoke engine with necessary models and processors.
Args:
live_portrait (LivePortraitPipeline): The LivePortrait model for video generation.
"""
self.live_portrait = live_portrait
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.processed_cache = {} # Stores the processed image data
logger.info("β
FacePoke Engine initialized successfully.")
async def get_image_hash(self, image: Union[Image.Image, str, bytes]) -> str:
"""
Compute or retrieve the hash for an image.
Args:
image (Union[Image.Image, str, bytes]): The input image, either as a PIL Image,
base64 string, or bytes.
Returns:
str: The computed hash of the image.
"""
if isinstance(image, str):
# Assume it's already a hash if it's a string of the right length
if len(image) == 32:
return image
# Otherwise, assume it's a base64 string
image = base64_data_uri_to_PIL_Image(image)
if isinstance(image, Image.Image):
return hashlib.md5(image.tobytes()).hexdigest()
elif isinstance(image, bytes):
return hashlib.md5(image).hexdigest()
else:
raise ValueError("Unsupported image type")
@alru_cache(maxsize=512)
async def load_image(self, data):
image = Image.open(io.BytesIO(data))
image_hash = await self.get_image_hash(image)
img_rgb = np.array(image)
inference_cfg = self.live_portrait.live_portrait_wrapper.cfg
img_rgb = await asyncio.to_thread(resize_to_limit, img_rgb, inference_cfg.ref_max_shape, inference_cfg.ref_shape_n)
crop_info = await asyncio.to_thread(self.live_portrait.cropper.crop_single_image, img_rgb)
img_crop_256x256 = crop_info['img_crop_256x256']
I_s = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.prepare_source, img_crop_256x256)
x_s_info = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.get_kp_info, I_s)
f_s = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.extract_feature_3d, I_s)
x_s = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.transform_keypoint, x_s_info)
processed_data = {
'img_rgb': img_rgb,
'crop_info': crop_info,
'x_s_info': x_s_info,
'f_s': f_s,
'x_s': x_s,
'inference_cfg': inference_cfg
}
self.processed_cache[image_hash] = processed_data
# Calculate the bounding box
bbox_info = parse_bbox_from_landmark(processed_data['crop_info']['lmk_crop'], scale=1.0)
return {
'h': image_hash,
# those aren't easy to serialize
'c': bbox_info['center'], # 2x1
's': bbox_info['size'], # scalar
'b': bbox_info['bbox'], # 4x2
'a': bbox_info['angle'], # rad, counterclockwise
# 'bbox_rot': bbox_info['bbox_rot'].toList(), # 4x2
}
async def transform_image(self, image_hash: str, params: Dict[str, float]) -> bytes:
# If we don't have the image in cache yet, add it
if image_hash not in self.processed_cache:
raise ValueError("cache miss")
processed_data = self.processed_cache[image_hash]
try:
# Apply modifications based on params
x_d_new = processed_data['x_s_info']['kp'].clone()
modifications = [
('smile', [
(0, 20, 1, -0.01), (0, 14, 1, -0.02), (0, 17, 1, 0.0065), (0, 17, 2, 0.003),
(0, 13, 1, -0.00275), (0, 16, 1, -0.00275), (0, 3, 1, -0.0035), (0, 7, 1, -0.0035)
]),
('aaa', [
(0, 19, 1, 0.001), (0, 19, 2, 0.0001), (0, 17, 1, -0.0001)
]),
('eee', [
(0, 20, 2, -0.001), (0, 20, 1, -0.001), (0, 14, 1, -0.001)
]),
('woo', [
(0, 14, 1, 0.001), (0, 3, 1, -0.0005), (0, 7, 1, -0.0005), (0, 17, 2, -0.0005)
]),
('wink', [
(0, 11, 1, 0.001), (0, 13, 1, -0.0003), (0, 17, 0, 0.0003),
(0, 17, 1, 0.0003), (0, 3, 1, -0.0003)
]),
('pupil_x', [
(0, 11, 0, 0.0007 if params.get('pupil_x', 0) > 0 else 0.001),
(0, 15, 0, 0.001 if params.get('pupil_x', 0) > 0 else 0.0007)
]),
('pupil_y', [
(0, 11, 1, -0.001), (0, 15, 1, -0.001)
]),
('eyes', [
(0, 11, 1, -0.001), (0, 13, 1, 0.0003), (0, 15, 1, -0.001), (0, 16, 1, 0.0003),
(0, 1, 1, -0.00025), (0, 2, 1, 0.00025)
]),
('eyebrow', [
(0, 1, 1, 0.001 if params.get('eyebrow', 0) > 0 else 0.0003),
(0, 2, 1, -0.001 if params.get('eyebrow', 0) > 0 else -0.0003),
(0, 1, 0, -0.001 if params.get('eyebrow', 0) <= 0 else 0),
(0, 2, 0, 0.001 if params.get('eyebrow', 0) <= 0 else 0)
])
]
for param_name, adjustments in modifications:
param_value = params.get(param_name, 0)
for i, j, k, factor in adjustments:
x_d_new[i, j, k] += param_value * factor
# Special case for pupil_y affecting eyes
x_d_new[0, 11, 1] -= params.get('pupil_y', 0) * 0.001
x_d_new[0, 15, 1] -= params.get('pupil_y', 0) * 0.001
params['eyes'] = params.get('eyes', 0) - params.get('pupil_y', 0) / 2.
# Apply rotation
R_new = get_rotation_matrix(
processed_data['x_s_info']['pitch'] + params.get('rotate_pitch', 0),
processed_data['x_s_info']['yaw'] + params.get('rotate_yaw', 0),
processed_data['x_s_info']['roll'] + params.get('rotate_roll', 0)
)
x_d_new = processed_data['x_s_info']['scale'] * (x_d_new @ R_new) + processed_data['x_s_info']['t']
# Apply stitching
x_d_new = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.stitching, processed_data['x_s'], x_d_new)
# Generate the output
out = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.warp_decode, processed_data['f_s'], processed_data['x_s'], x_d_new)
I_p = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.parse_output, out['out'])
buffered = io.BytesIO()
####################################################
# this part is about stitching the image back into the original.
#
# this is an expensive operation, not just because of the compute
# but because the payload will also be bigger (we send back the whole pic)
#
# I'm currently running some experiments to do it in the frontend
#
# --- old way: we do it in the server-side: ---
mask_ori = await asyncio.to_thread(prepare_paste_back,
processed_data['inference_cfg'].mask_crop, processed_data['crop_info']['M_c2o'],
dsize=(processed_data['img_rgb'].shape[1], processed_data['img_rgb'].shape[0])
)
I_p_to_ori_blend = await asyncio.to_thread(paste_back,
I_p[0], processed_data['crop_info']['M_c2o'], processed_data['img_rgb'], mask_ori
)
result_image = Image.fromarray(I_p_to_ori_blend)
# --- maybe future way: do it in the frontend: ---
#result_image = Image.fromarray(I_p[0])
####################################################
# write it into a webp
result_image.save(buffered, format="WebP", quality=82, lossless=False, method=6)
return buffered.getvalue()
except Exception as e:
raise ValueError(f"Failed to modify image: {str(e)}")
|