File size: 4,198 Bytes
d69879c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*- coding: utf-8 -*-
# @Organization  : insightface.ai
# @Author        : Jia Guo
# @Time          : 2021-05-04
# @Function      : 

from __future__ import division
import numpy as np
import cv2
import onnx
import onnxruntime
from ..utils import face_align
from ..utils import transform
from ..data import get_object

__all__ = [
    'Landmark',
]


class Landmark:
    def __init__(self, model_file=None, session=None):
        assert model_file is not None
        self.model_file = model_file
        self.session = session
        find_sub = False
        find_mul = False
        model = onnx.load(self.model_file)
        graph = model.graph
        for nid, node in enumerate(graph.node[:8]):
            #print(nid, node.name)
            if node.name.startswith('Sub') or node.name.startswith('_minus'):
                find_sub = True
            if node.name.startswith('Mul') or node.name.startswith('_mul'):
                find_mul = True
            if nid<3 and node.name=='bn_data':
                find_sub = True
                find_mul = True
        if find_sub and find_mul:
            #mxnet arcface model
            input_mean = 0.0
            input_std = 1.0
        else:
            input_mean = 127.5
            input_std = 128.0
        self.input_mean = input_mean
        self.input_std = input_std
        #print('input mean and std:', model_file, self.input_mean, self.input_std)
        if self.session is None:
            self.session = onnxruntime.InferenceSession(self.model_file, None)
        input_cfg = self.session.get_inputs()[0]
        input_shape = input_cfg.shape
        input_name = input_cfg.name
        self.input_size = tuple(input_shape[2:4][::-1])
        self.input_shape = input_shape
        outputs = self.session.get_outputs()
        output_names = []
        for out in outputs:
            output_names.append(out.name)
        self.input_name = input_name
        self.output_names = output_names
        assert len(self.output_names)==1
        output_shape = outputs[0].shape
        self.require_pose = False
        #print('init output_shape:', output_shape)
        if output_shape[1]==3309:
            self.lmk_dim = 3
            self.lmk_num = 68
            self.mean_lmk = get_object('meanshape_68.pkl')
            self.require_pose = True
        else:
            self.lmk_dim = 2
            self.lmk_num = output_shape[1]//self.lmk_dim
        self.taskname = 'landmark_%dd_%d'%(self.lmk_dim, self.lmk_num)

    def prepare(self, ctx_id, **kwargs):
        if ctx_id<0:
            self.session.set_providers(['CPUExecutionProvider'])

    def get(self, img, face):
        bbox = face.bbox
        w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
        center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
        rotate = 0
        _scale = self.input_size[0]  / (max(w, h)*1.5)
        #print('param:', img.shape, bbox, center, self.input_size, _scale, rotate)
        aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate)
        input_size = tuple(aimg.shape[0:2][::-1])
        #assert input_size==self.input_size
        blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
        pred = self.session.run(self.output_names, {self.input_name : blob})[0][0]
        if pred.shape[0] >= 3000:
            pred = pred.reshape((-1, 3))
        else:
            pred = pred.reshape((-1, 2))
        if self.lmk_num < pred.shape[0]:
            pred = pred[self.lmk_num*-1:,:]
        pred[:, 0:2] += 1
        pred[:, 0:2] *= (self.input_size[0] // 2)
        if pred.shape[1] == 3:
            pred[:, 2] *= (self.input_size[0] // 2)

        IM = cv2.invertAffineTransform(M)
        pred = face_align.trans_points(pred, IM)
        face[self.taskname] = pred
        if self.require_pose:
            P = transform.estimate_affine_matrix_3d23d(self.mean_lmk, pred)
            s, R, t = transform.P2sRt(P)
            rx, ry, rz = transform.matrix2angle(R)
            pose = np.array( [rx, ry, rz], dtype=np.float32 )
            face['pose'] = pose #pitch, yaw, roll
        return pred