File size: 15,643 Bytes
d69879c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# coding: utf-8

"""
This file defines various neural network modules and utility functions, including convolutional and residual blocks,
normalizations, and functions for spatial transformation and tensor manipulation.
"""

from torch import nn
import torch.nn.functional as F
import torch
import torch.nn.utils.spectral_norm as spectral_norm
import math
import warnings


def kp2gaussian(kp, spatial_size, kp_variance):
    """
    Transform a keypoint into gaussian like representation
    """
    mean = kp

    coordinate_grid = make_coordinate_grid(spatial_size, mean)
    number_of_leading_dimensions = len(mean.shape) - 1
    shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
    coordinate_grid = coordinate_grid.view(*shape)
    repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
    coordinate_grid = coordinate_grid.repeat(*repeats)

    # Preprocess kp shape
    shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
    mean = mean.view(*shape)

    mean_sub = (coordinate_grid - mean)

    out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)

    return out


def make_coordinate_grid(spatial_size, ref, **kwargs):
    d, h, w = spatial_size
    x = torch.arange(w).type(ref.dtype).to(ref.device)
    y = torch.arange(h).type(ref.dtype).to(ref.device)
    z = torch.arange(d).type(ref.dtype).to(ref.device)

    # NOTE: must be right-down-in
    x = (2 * (x / (w - 1)) - 1)  # the x axis faces to the right
    y = (2 * (y / (h - 1)) - 1)  # the y axis faces to the bottom
    z = (2 * (z / (d - 1)) - 1)  # the z axis faces to the inner

    yy = y.view(1, -1, 1).repeat(d, 1, w)
    xx = x.view(1, 1, -1).repeat(d, h, 1)
    zz = z.view(-1, 1, 1).repeat(1, h, w)

    meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)

    return meshed


class ConvT2d(nn.Module):
    """
    Upsampling block for use in decoder.
    """

    def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
        super(ConvT2d, self).__init__()

        self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
                                        padding=padding, output_padding=output_padding)
        self.norm = nn.InstanceNorm2d(out_features)

    def forward(self, x):
        out = self.convT(x)
        out = self.norm(out)
        out = F.leaky_relu(out)
        return out


class ResBlock3d(nn.Module):
    """
    Res block, preserve spatial resolution.
    """

    def __init__(self, in_features, kernel_size, padding):
        super(ResBlock3d, self).__init__()
        self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
        self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
        self.norm1 = nn.BatchNorm3d(in_features, affine=True)
        self.norm2 = nn.BatchNorm3d(in_features, affine=True)

    def forward(self, x):
        out = self.norm1(x)
        out = F.relu(out)
        out = self.conv1(out)
        out = self.norm2(out)
        out = F.relu(out)
        out = self.conv2(out)
        out += x
        return out


class UpBlock3d(nn.Module):
    """
    Upsampling block for use in decoder.
    """

    def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
        super(UpBlock3d, self).__init__()

        self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
                              padding=padding, groups=groups)
        self.norm = nn.BatchNorm3d(out_features, affine=True)

    def forward(self, x):
        out = F.interpolate(x, scale_factor=(1, 2, 2))
        out = self.conv(out)
        out = self.norm(out)
        out = F.relu(out)
        return out


class DownBlock2d(nn.Module):
    """
    Downsampling block for use in encoder.
    """

    def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
        super(DownBlock2d, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
        self.norm = nn.BatchNorm2d(out_features, affine=True)
        self.pool = nn.AvgPool2d(kernel_size=(2, 2))

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        out = self.pool(out)
        return out


class DownBlock3d(nn.Module):
    """
    Downsampling block for use in encoder.
    """

    def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
        super(DownBlock3d, self).__init__()
        '''
        self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
                                padding=padding, groups=groups, stride=(1, 2, 2))
        '''
        self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
                              padding=padding, groups=groups)
        self.norm = nn.BatchNorm3d(out_features, affine=True)
        self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        out = self.pool(out)
        return out


class SameBlock2d(nn.Module):
    """
    Simple block, preserve spatial resolution.
    """

    def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
        super(SameBlock2d, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
        self.norm = nn.BatchNorm2d(out_features, affine=True)
        if lrelu:
            self.ac = nn.LeakyReLU()
        else:
            self.ac = nn.ReLU()

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = self.ac(out)
        return out


class Encoder(nn.Module):
    """
    Hourglass Encoder
    """

    def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
        super(Encoder, self).__init__()

        down_blocks = []
        for i in range(num_blocks):
            down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
        self.down_blocks = nn.ModuleList(down_blocks)

    def forward(self, x):
        outs = [x]
        for down_block in self.down_blocks:
            outs.append(down_block(outs[-1]))
        return outs


class Decoder(nn.Module):
    """
    Hourglass Decoder
    """

    def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
        super(Decoder, self).__init__()

        up_blocks = []

        for i in range(num_blocks)[::-1]:
            in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
            out_filters = min(max_features, block_expansion * (2 ** i))
            up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))

        self.up_blocks = nn.ModuleList(up_blocks)
        self.out_filters = block_expansion + in_features

        self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
        self.norm = nn.BatchNorm3d(self.out_filters, affine=True)

    def forward(self, x):
        out = x.pop()
        for up_block in self.up_blocks:
            out = up_block(out)
            skip = x.pop()
            out = torch.cat([out, skip], dim=1)
        out = self.conv(out)
        out = self.norm(out)
        out = F.relu(out)
        return out


class Hourglass(nn.Module):
    """
    Hourglass architecture.
    """

    def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
        super(Hourglass, self).__init__()
        self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
        self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
        self.out_filters = self.decoder.out_filters

    def forward(self, x):
        return self.decoder(self.encoder(x))


class SPADE(nn.Module):
    def __init__(self, norm_nc, label_nc):
        super().__init__()

        self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
        nhidden = 128

        self.mlp_shared = nn.Sequential(
            nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
            nn.ReLU())
        self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
        self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)

    def forward(self, x, segmap):
        normalized = self.param_free_norm(x)
        segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
        actv = self.mlp_shared(segmap)
        gamma = self.mlp_gamma(actv)
        beta = self.mlp_beta(actv)
        out = normalized * (1 + gamma) + beta
        return out


class SPADEResnetBlock(nn.Module):
    def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
        super().__init__()
        # Attributes
        self.learned_shortcut = (fin != fout)
        fmiddle = min(fin, fout)
        self.use_se = use_se
        # create conv layers
        self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
        self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
        if self.learned_shortcut:
            self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
        # apply spectral norm if specified
        if 'spectral' in norm_G:
            self.conv_0 = spectral_norm(self.conv_0)
            self.conv_1 = spectral_norm(self.conv_1)
            if self.learned_shortcut:
                self.conv_s = spectral_norm(self.conv_s)
        # define normalization layers
        self.norm_0 = SPADE(fin, label_nc)
        self.norm_1 = SPADE(fmiddle, label_nc)
        if self.learned_shortcut:
            self.norm_s = SPADE(fin, label_nc)

    def forward(self, x, seg1):
        x_s = self.shortcut(x, seg1)
        dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
        dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
        out = x_s + dx
        return out

    def shortcut(self, x, seg1):
        if self.learned_shortcut:
            x_s = self.conv_s(self.norm_s(x, seg1))
        else:
            x_s = x
        return x_s

    def actvn(self, x):
        return F.leaky_relu(x, 2e-1)


def filter_state_dict(state_dict, remove_name='fc'):
    new_state_dict = {}
    for key in state_dict:
        if remove_name in key:
            continue
        new_state_dict[key] = state_dict[key]
    return new_state_dict


class GRN(nn.Module):
    """ GRN (Global Response Normalization) layer
    """

    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x


class LayerNorm(nn.Module):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape, )

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
    """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class DropPath(nn.Module):
    """ Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None, scale_by_keep=True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)