File size: 4,954 Bytes
d69879c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding: utf-8

"""
utility functions and classes to handle feature extraction and model loading
"""

import os
import os.path as osp
import torch
from collections import OrderedDict

from ..modules.spade_generator import SPADEDecoder
from ..modules.warping_network import WarpingNetwork
from ..modules.motion_extractor import MotionExtractor
from ..modules.appearance_feature_extractor import AppearanceFeatureExtractor
from ..modules.stitching_retargeting_network import StitchingRetargetingNetwork


def suffix(filename):
    """a.jpg -> jpg"""
    pos = filename.rfind(".")
    if pos == -1:
        return ""
    return filename[pos + 1:]


def prefix(filename):
    """a.jpg -> a"""
    pos = filename.rfind(".")
    if pos == -1:
        return filename
    return filename[:pos]


def basename(filename):
    """a/b/c.jpg -> c"""
    return prefix(osp.basename(filename))


def is_video(file_path):
    if file_path.lower().endswith((".mp4", ".mov", ".avi", ".webm")) or osp.isdir(file_path):
        return True
    return False


def is_template(file_path):
    if file_path.endswith(".pkl"):
        return True
    return False


def mkdir(d, log=False):
    # return self-assined `d`, for one line code
    if not osp.exists(d):
        os.makedirs(d, exist_ok=True)
        if log:
            print(f"Make dir: {d}")
    return d


def squeeze_tensor_to_numpy(tensor):
    out = tensor.data.squeeze(0).cpu().numpy()
    return out


def dct2cuda(dct: dict, device_id: int):
    for key in dct:
        dct[key] = torch.tensor(dct[key]).cuda(device_id)
    return dct


def concat_feat(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
    """
    kp_source: (bs, k, 3)
    kp_driving: (bs, k, 3)
    Return: (bs, 2k*3)
    """
    bs_src = kp_source.shape[0]
    bs_dri = kp_driving.shape[0]
    assert bs_src == bs_dri, 'batch size must be equal'

    feat = torch.cat([kp_source.view(bs_src, -1), kp_driving.view(bs_dri, -1)], dim=1)
    return feat


def remove_ddp_dumplicate_key(state_dict):
    state_dict_new = OrderedDict()
    for key in state_dict.keys():
        state_dict_new[key.replace('module.', '')] = state_dict[key]
    return state_dict_new


def load_model(ckpt_path, model_config, device, model_type):
    model_params = model_config['model_params'][f'{model_type}_params']

    if model_type == 'appearance_feature_extractor':
        model = AppearanceFeatureExtractor(**model_params).cuda(device)
    elif model_type == 'motion_extractor':
        model = MotionExtractor(**model_params).cuda(device)
    elif model_type == 'warping_module':
        model = WarpingNetwork(**model_params).cuda(device)
    elif model_type == 'spade_generator':
        model = SPADEDecoder(**model_params).cuda(device)
    elif model_type == 'stitching_retargeting_module':
        # Special handling for stitching and retargeting module
        config = model_config['model_params']['stitching_retargeting_module_params']
        checkpoint = torch.load(ckpt_path, weights_only=True, map_location=lambda storage, loc: storage)

        stitcher = StitchingRetargetingNetwork(**config.get('stitching'))
        stitcher.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_shoulder']))
        stitcher = stitcher.cuda(device)
        stitcher.eval()

        retargetor_lip = StitchingRetargetingNetwork(**config.get('lip'))
        retargetor_lip.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_mouth']))
        retargetor_lip = retargetor_lip.cuda(device)
        retargetor_lip.eval()

        retargetor_eye = StitchingRetargetingNetwork(**config.get('eye'))
        retargetor_eye.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_eye']))
        retargetor_eye = retargetor_eye.cuda(device)
        retargetor_eye.eval()

        return {
            'stitching': stitcher,
            'lip': retargetor_lip,
            'eye': retargetor_eye
        }
    else:
        raise ValueError(f"Unknown model type: {model_type}")

    model.load_state_dict(torch.load(ckpt_path, weights_only=True, map_location=lambda storage, loc: storage))
    model.eval()
    return model


# get coefficients of Eqn. 7
def calculate_transformation(config, s_kp_info, t_0_kp_info, t_i_kp_info, R_s, R_t_0, R_t_i):
    if config.relative:
        new_rotation = (R_t_i @ R_t_0.permute(0, 2, 1)) @ R_s
        new_expression = s_kp_info['exp'] + (t_i_kp_info['exp'] - t_0_kp_info['exp'])
    else:
        new_rotation = R_t_i
        new_expression = t_i_kp_info['exp']
    new_translation = s_kp_info['t'] + (t_i_kp_info['t'] - t_0_kp_info['t'])
    new_translation[..., 2].fill_(0)  # Keep the z-axis unchanged
    new_scale = s_kp_info['scale'] * (t_i_kp_info['scale'] / t_0_kp_info['scale'])
    return new_rotation, new_expression, new_translation, new_scale


def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content