Spaces:
Running
on
L40S
Running
on
L40S
File size: 1,083 Bytes
d69879c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
# coding: utf-8
"""
Motion extractor(M), which directly predicts the canonical keypoints, head pose and expression deformation of the input image
"""
from torch import nn
import torch
from .convnextv2 import convnextv2_tiny
from .util import filter_state_dict
model_dict = {
'convnextv2_tiny': convnextv2_tiny,
}
class MotionExtractor(nn.Module):
def __init__(self, **kwargs):
super(MotionExtractor, self).__init__()
# default is convnextv2_base
backbone = kwargs.get('backbone', 'convnextv2_tiny')
self.detector = model_dict.get(backbone)(**kwargs)
def load_pretrained(self, init_path: str):
if init_path not in (None, ''):
state_dict = torch.load(init_path, map_location=lambda storage, loc: storage)['model']
state_dict = filter_state_dict(state_dict, remove_name='head')
ret = self.detector.load_state_dict(state_dict, strict=False)
print(f'Load pretrained model from {init_path}, ret: {ret}')
def forward(self, x):
out = self.detector(x)
return out
|