Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,444 Bytes
d69879c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# coding: utf-8
"""
Pipeline for gradio
"""
import gradio as gr
from .config.argument_config import ArgumentConfig
from .live_portrait_pipeline import LivePortraitPipeline
from .utils.io import load_img_online
from .utils.rprint import rlog as log
from .utils.crop import prepare_paste_back, paste_back
from .utils.camera import get_rotation_matrix
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
def update_args(args, user_args):
"""update the args according to user inputs
"""
for k, v in user_args.items():
if hasattr(args, k):
setattr(args, k, v)
return args
class GradioPipeline(LivePortraitPipeline):
def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
super().__init__(inference_cfg, crop_cfg)
# self.live_portrait_wrapper = self.live_portrait_wrapper
self.args = args
# for single image retargeting
self.start_prepare = False
self.f_s_user = None
self.x_c_s_info_user = None
self.x_s_user = None
self.source_lmk_user = None
self.mask_ori = None
self.img_rgb = None
self.crop_M_c2o = None
def execute_video(
self,
input_image_path,
input_video_path,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
):
""" for video driven potrait animation
"""
if input_image_path is not None and input_video_path is not None:
args_user = {
'source_image': input_image_path,
'driving_info': input_video_path,
'flag_relative': flag_relative_input,
'flag_do_crop': flag_do_crop_input,
'flag_pasteback': flag_remap_input,
}
# update config from user input
self.args = update_args(self.args, args_user)
self.live_portrait_wrapper.update_config(self.args.__dict__)
self.cropper.update_config(self.args.__dict__)
# video driven animation
video_path, video_path_concat = self.execute(self.args)
gr.Info("Run successfully!", duration=2)
return video_path, video_path_concat,
else:
raise gr.Error("The input source portrait or driving video hasn't been prepared yet π₯!", duration=5)
def execute_image(self, input_eye_ratio: float, input_lip_ratio: float):
""" for single image retargeting
"""
if input_eye_ratio is None or input_eye_ratio is None:
raise gr.Error("Invalid ratio input π₯!", duration=5)
elif self.f_s_user is None:
if self.start_prepare:
raise gr.Error(
"The source portrait is under processing π₯! Please wait for a second.",
duration=5
)
else:
raise gr.Error(
"The source portrait hasn't been prepared yet π₯! Please scroll to the top of the page to upload.",
duration=5
)
else:
# β_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], self.source_lmk_user)
eyes_delta = self.live_portrait_wrapper.retarget_eye(self.x_s_user, combined_eye_ratio_tensor)
# β_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], self.source_lmk_user)
lip_delta = self.live_portrait_wrapper.retarget_lip(self.x_s_user, combined_lip_ratio_tensor)
num_kp = self.x_s_user.shape[1]
# default: use x_s
x_d_new = self.x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
# D(W(f_s; x_s, xβ²_d))
out = self.live_portrait_wrapper.warp_decode(self.f_s_user, self.x_s_user, x_d_new)
out = self.live_portrait_wrapper.parse_output(out['out'])[0]
out_to_ori_blend = paste_back(out, self.crop_M_c2o, self.img_rgb, self.mask_ori)
gr.Info("Run successfully!", duration=2)
return out, out_to_ori_blend
def prepare_retargeting(self, input_image_path, flag_do_crop = True):
""" for single image retargeting
"""
if input_image_path is not None:
gr.Info("Upload successfully!", duration=2)
self.start_prepare = True
inference_cfg = self.live_portrait_wrapper.cfg
######## process source portrait ########
img_rgb = load_img_online(input_image_path, mode='rgb', max_dim=1280, n=16)
log(f"Load source image from {input_image_path}.")
crop_info = self.cropper.crop_single_image(img_rgb)
if flag_do_crop:
I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
else:
I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
############################################
# record global info for next time use
self.f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
self.x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
self.x_s_info_user = x_s_info
self.source_lmk_user = crop_info['lmk_crop']
self.img_rgb = img_rgb
self.crop_M_c2o = crop_info['M_c2o']
self.mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
# update slider
eye_close_ratio = calc_eye_close_ratio(self.source_lmk_user[None])
eye_close_ratio = float(eye_close_ratio.squeeze(0).mean())
lip_close_ratio = calc_lip_close_ratio(self.source_lmk_user[None])
lip_close_ratio = float(lip_close_ratio.squeeze(0).mean())
# for vis
self.I_s_vis = self.live_portrait_wrapper.parse_output(I_s)[0]
return eye_close_ratio, lip_close_ratio, self.I_s_vis
else:
# when press the clear button, go here
return 0.8, 0.8, self.I_s_vis
|