Spaces:
Running
on
L40S
Running
on
L40S
# coding: utf-8 | |
""" | |
face detectoin and alignment using InsightFace | |
""" | |
import numpy as np | |
from .rprint import rlog as log | |
from .dependencies.insightface.app import FaceAnalysis | |
from .dependencies.insightface.app.common import Face | |
from .timer import Timer | |
def sort_by_direction(faces, direction: str = 'large-small', face_center=None): | |
if len(faces) <= 0: | |
return faces | |
if direction == 'left-right': | |
return sorted(faces, key=lambda face: face['bbox'][0]) | |
if direction == 'right-left': | |
return sorted(faces, key=lambda face: face['bbox'][0], reverse=True) | |
if direction == 'top-bottom': | |
return sorted(faces, key=lambda face: face['bbox'][1]) | |
if direction == 'bottom-top': | |
return sorted(faces, key=lambda face: face['bbox'][1], reverse=True) | |
if direction == 'small-large': | |
return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1])) | |
if direction == 'large-small': | |
return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse=True) | |
if direction == 'distance-from-retarget-face': | |
return sorted(faces, key=lambda face: (((face['bbox'][2]+face['bbox'][0])/2-face_center[0])**2+((face['bbox'][3]+face['bbox'][1])/2-face_center[1])**2)**0.5) | |
return faces | |
class FaceAnalysisDIY(FaceAnalysis): | |
def __init__(self, name='buffalo_l', root='~/.insightface', allowed_modules=None, **kwargs): | |
super().__init__(name=name, root=root, allowed_modules=allowed_modules, **kwargs) | |
self.timer = Timer() | |
def get(self, img_bgr, **kwargs): | |
max_num = kwargs.get('max_num', 0) # the number of the detected faces, 0 means no limit | |
flag_do_landmark_2d_106 = kwargs.get('flag_do_landmark_2d_106', True) # whether to do 106-point detection | |
direction = kwargs.get('direction', 'large-small') # sorting direction | |
face_center = None | |
bboxes, kpss = self.det_model.detect(img_bgr, max_num=max_num, metric='default') | |
if bboxes.shape[0] == 0: | |
return [] | |
ret = [] | |
for i in range(bboxes.shape[0]): | |
bbox = bboxes[i, 0:4] | |
det_score = bboxes[i, 4] | |
kps = None | |
if kpss is not None: | |
kps = kpss[i] | |
face = Face(bbox=bbox, kps=kps, det_score=det_score) | |
for taskname, model in self.models.items(): | |
if taskname == 'detection': | |
continue | |
if (not flag_do_landmark_2d_106) and taskname == 'landmark_2d_106': | |
continue | |
# print(f'taskname: {taskname}') | |
model.get(img_bgr, face) | |
ret.append(face) | |
ret = sort_by_direction(ret, direction, face_center) | |
return ret | |
def warmup(self): | |
self.timer.tic() | |
img_bgr = np.zeros((512, 512, 3), dtype=np.uint8) | |
self.get(img_bgr) | |
elapse = self.timer.toc() | |
#log(f'FaceAnalysisDIY warmup time: {elapse:.3f}s') | |