FacePoke / engine.py
jbilcke-hf's picture
jbilcke-hf HF staff
we have to many requests per seconds in the logs, so let's make them light
c2ac436
raw
history blame
11.1 kB
import logging
import hashlib
import os
import io
import asyncio
import base64
from queue import Queue
from typing import Dict, Any, List, Optional, Union
from functools import lru_cache
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from liveportrait.config.argument_config import ArgumentConfig
from liveportrait.utils.camera import get_rotation_matrix
from liveportrait.utils.io import resize_to_limit
from liveportrait.utils.crop import prepare_paste_back, paste_back
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Global constants
DATA_ROOT = os.environ.get('DATA_ROOT', '/tmp/data')
MODELS_DIR = os.path.join(DATA_ROOT, "models")
def base64_data_uri_to_PIL_Image(base64_string: str) -> Image.Image:
"""
Convert a base64 data URI to a PIL Image.
Args:
base64_string (str): The base64 encoded image data.
Returns:
Image.Image: The decoded PIL Image.
"""
if ',' in base64_string:
base64_string = base64_string.split(',')[1]
img_data = base64.b64decode(base64_string)
return Image.open(io.BytesIO(img_data))
class Engine:
"""
The main engine class for FacePoke
"""
def __init__(self, live_portrait):
"""
Initialize the FacePoke engine with necessary models and processors.
Args:
live_portrait (LivePortraitPipeline): The LivePortrait model for video generation.
"""
self.live_portrait = live_portrait
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.image_cache = {} # Stores the original images
self.processed_cache = {} # Stores the processed image data
logger.info("βœ… FacePoke Engine initialized successfully.")
def get_image_hash(self, image: Union[Image.Image, str, bytes]) -> str:
"""
Compute or retrieve the hash for an image.
Args:
image (Union[Image.Image, str, bytes]): The input image, either as a PIL Image,
base64 string, or bytes.
Returns:
str: The computed hash of the image.
"""
if isinstance(image, str):
# Assume it's already a hash if it's a string of the right length
if len(image) == 32:
return image
# Otherwise, assume it's a base64 string
image = base64_data_uri_to_PIL_Image(image)
if isinstance(image, Image.Image):
return hashlib.md5(image.tobytes()).hexdigest()
elif isinstance(image, bytes):
return hashlib.md5(image).hexdigest()
else:
raise ValueError("Unsupported image type")
@lru_cache(maxsize=256)
def _process_image(self, image_hash: str) -> Dict[str, Any]:
"""
Process the input image and cache the results.
Args:
image_hash (str): Hash of the input image.
Returns:
Dict[str, Any]: Processed image data.
"""
# let's hide the logs as there are thousands of message slike this
#logger.info(f"Processing image with hash: {image_hash}")
if image_hash not in self.image_cache:
raise ValueError(f"Image with hash {image_hash} not found in cache")
image = self.image_cache[image_hash]
img_rgb = np.array(image)
inference_cfg = self.live_portrait.live_portrait_wrapper.cfg
img_rgb = resize_to_limit(img_rgb, inference_cfg.ref_max_shape, inference_cfg.ref_shape_n)
crop_info = self.live_portrait.cropper.crop_single_image(img_rgb)
img_crop_256x256 = crop_info['img_crop_256x256']
I_s = self.live_portrait.live_portrait_wrapper.prepare_source(img_crop_256x256)
x_s_info = self.live_portrait.live_portrait_wrapper.get_kp_info(I_s)
f_s = self.live_portrait.live_portrait_wrapper.extract_feature_3d(I_s)
x_s = self.live_portrait.live_portrait_wrapper.transform_keypoint(x_s_info)
processed_data = {
'img_rgb': img_rgb,
'crop_info': crop_info,
'x_s_info': x_s_info,
'f_s': f_s,
'x_s': x_s,
'inference_cfg': inference_cfg
}
self.processed_cache[image_hash] = processed_data
return processed_data
async def modify_image(self, image_or_hash: Union[Image.Image, str, bytes], params: Dict[str, float]) -> str:
"""
Modify the input image based on the provided parameters, using caching for efficiency
and outputting the result as a WebP image.
Args:
image_or_hash (Union[Image.Image, str, bytes]): Input image as a PIL Image, base64-encoded string,
image bytes, or a hash string.
params (Dict[str, float]): Parameters for face transformation.
Returns:
str: Modified image as a base64-encoded WebP data URI.
Raises:
ValueError: If there's an error modifying the image or WebP is not supported.
"""
# let's disable those logs completely as there are thousands of message slike this
#logger.info("Starting image modification")
#logger.debug(f"Modification parameters: {params}")
try:
image_hash = self.get_image_hash(image_or_hash)
# If we don't have the image in cache yet, add it
if image_hash not in self.image_cache:
if isinstance(image_or_hash, (Image.Image, bytes)):
self.image_cache[image_hash] = image_or_hash
elif isinstance(image_or_hash, str) and len(image_or_hash) != 32:
# It's a base64 string, not a hash
self.image_cache[image_hash] = base64_data_uri_to_PIL_Image(image_or_hash)
else:
raise ValueError("Image not found in cache and no valid image provided")
# Process the image (this will use the cache if available)
if image_hash not in self.processed_cache:
processed_data = await asyncio.to_thread(self._process_image, image_hash)
else:
processed_data = self.processed_cache[image_hash]
# Apply modifications based on params
x_d_new = processed_data['x_s_info']['kp'].clone()
await self._apply_facial_modifications(x_d_new, params)
# Apply rotation
R_new = get_rotation_matrix(
processed_data['x_s_info']['pitch'] + params.get('rotate_pitch', 0),
processed_data['x_s_info']['yaw'] + params.get('rotate_yaw', 0),
processed_data['x_s_info']['roll'] + params.get('rotate_roll', 0)
)
x_d_new = processed_data['x_s_info']['scale'] * (x_d_new @ R_new) + processed_data['x_s_info']['t']
# Apply stitching
x_d_new = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.stitching, processed_data['x_s'], x_d_new)
# Generate the output
out = await asyncio.to_thread(self.live_portrait.live_portrait_wrapper.warp_decode, processed_data['f_s'], processed_data['x_s'], x_d_new)
I_p = self.live_portrait.live_portrait_wrapper.parse_output(out['out'])[0]
# Paste back to full size
mask_ori = await asyncio.to_thread(
prepare_paste_back,
processed_data['inference_cfg'].mask_crop, processed_data['crop_info']['M_c2o'],
dsize=(processed_data['img_rgb'].shape[1], processed_data['img_rgb'].shape[0])
)
I_p_to_ori_blend = await asyncio.to_thread(
paste_back,
I_p, processed_data['crop_info']['M_c2o'], processed_data['img_rgb'], mask_ori
)
# Convert the result to a PIL Image
result_image = Image.fromarray(I_p_to_ori_blend)
# Save as WebP
buffered = io.BytesIO()
result_image.save(buffered, format="WebP", quality=85) # Adjust quality as needed
modified_image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
#logger.info("Image modification completed successfully")
return f"data:image/webp;base64,{modified_image_base64}"
except Exception as e:
#logger.error(f"Error in modify_image: {str(e)}")
#logger.exception("Full traceback:")
raise ValueError(f"Failed to modify image: {str(e)}")
async def _apply_facial_modifications(self, x_d_new: torch.Tensor, params: Dict[str, float]) -> None:
"""
Apply facial modifications to the keypoints based on the provided parameters.
Args:
x_d_new (torch.Tensor): Tensor of facial keypoints to be modified.
params (Dict[str, float]): Parameters for face transformation.
"""
modifications = [
('smile', [
(0, 20, 1, -0.01), (0, 14, 1, -0.02), (0, 17, 1, 0.0065), (0, 17, 2, 0.003),
(0, 13, 1, -0.00275), (0, 16, 1, -0.00275), (0, 3, 1, -0.0035), (0, 7, 1, -0.0035)
]),
('aaa', [
(0, 19, 1, 0.001), (0, 19, 2, 0.0001), (0, 17, 1, -0.0001)
]),
('eee', [
(0, 20, 2, -0.001), (0, 20, 1, -0.001), (0, 14, 1, -0.001)
]),
('woo', [
(0, 14, 1, 0.001), (0, 3, 1, -0.0005), (0, 7, 1, -0.0005), (0, 17, 2, -0.0005)
]),
('wink', [
(0, 11, 1, 0.001), (0, 13, 1, -0.0003), (0, 17, 0, 0.0003),
(0, 17, 1, 0.0003), (0, 3, 1, -0.0003)
]),
('pupil_x', [
(0, 11, 0, 0.0007 if params.get('pupil_x', 0) > 0 else 0.001),
(0, 15, 0, 0.001 if params.get('pupil_x', 0) > 0 else 0.0007)
]),
('pupil_y', [
(0, 11, 1, -0.001), (0, 15, 1, -0.001)
]),
('eyes', [
(0, 11, 1, -0.001), (0, 13, 1, 0.0003), (0, 15, 1, -0.001), (0, 16, 1, 0.0003),
(0, 1, 1, -0.00025), (0, 2, 1, 0.00025)
]),
('eyebrow', [
(0, 1, 1, 0.001 if params.get('eyebrow', 0) > 0 else 0.0003),
(0, 2, 1, -0.001 if params.get('eyebrow', 0) > 0 else -0.0003),
(0, 1, 0, -0.001 if params.get('eyebrow', 0) <= 0 else 0),
(0, 2, 0, 0.001 if params.get('eyebrow', 0) <= 0 else 0)
])
]
for param_name, adjustments in modifications:
param_value = params.get(param_name, 0)
for i, j, k, factor in adjustments:
x_d_new[i, j, k] += param_value * factor
# Special case for pupil_y affecting eyes
x_d_new[0, 11, 1] -= params.get('pupil_y', 0) * 0.001
x_d_new[0, 15, 1] -= params.get('pupil_y', 0) * 0.001
params['eyes'] = params.get('eyes', 0) - params.get('pupil_y', 0) / 2.