# coding: utf-8 """ Wrapper for LivePortrait core functions """ import os.path as osp import numpy as np import cv2 import torch import yaml from .utils.timer import Timer from .utils.helper import load_model, concat_feat from .utils.camera import headpose_pred_to_degree, get_rotation_matrix from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio from .config.inference_config import InferenceConfig from .utils.rprint import rlog as log class LivePortraitWrapper(object): def __init__(self, cfg: InferenceConfig): model_config = yaml.load(open(cfg.models_config, 'r'), Loader=yaml.SafeLoader) # init F self.appearance_feature_extractor = load_model(cfg.checkpoint_F, model_config, cfg.device_id, 'appearance_feature_extractor') #log(f'Load appearance_feature_extractor done.') # init M self.motion_extractor = load_model(cfg.checkpoint_M, model_config, cfg.device_id, 'motion_extractor') #log(f'Load motion_extractor done.') # init W self.warping_module = load_model(cfg.checkpoint_W, model_config, cfg.device_id, 'warping_module') #log(f'Load warping_module done.') # init G self.spade_generator = load_model(cfg.checkpoint_G, model_config, cfg.device_id, 'spade_generator') #log(f'Load spade_generator done.') # init S and R if cfg.checkpoint_S is not None and osp.exists(cfg.checkpoint_S): self.stitching_retargeting_module = load_model(cfg.checkpoint_S, model_config, cfg.device_id, 'stitching_retargeting_module') #log(f'Load stitching_retargeting_module done.') else: self.stitching_retargeting_module = None self.cfg = cfg self.device_id = cfg.device_id self.timer = Timer() def update_config(self, user_args): for k, v in user_args.items(): if hasattr(self.cfg, k): setattr(self.cfg, k, v) def prepare_source(self, img: np.ndarray) -> torch.Tensor: """ construct the input as standard img: HxWx3, uint8, 256x256 """ h, w = img.shape[:2] if h != self.cfg.input_shape[0] or w != self.cfg.input_shape[1]: x = cv2.resize(img, (self.cfg.input_shape[0], self.cfg.input_shape[1])) else: x = img.copy() if x.ndim == 3: x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1 elif x.ndim == 4: x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1 else: raise ValueError(f'img ndim should be 3 or 4: {x.ndim}') x = np.clip(x, 0, 1) # clip to 0~1 x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW x = x.cuda(self.device_id) return x def prepare_driving_videos(self, imgs) -> torch.Tensor: """ construct the input as standard imgs: NxBxHxWx3, uint8 """ if isinstance(imgs, list): _imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1 elif isinstance(imgs, np.ndarray): _imgs = imgs else: raise ValueError(f'imgs type error: {type(imgs)}') y = _imgs.astype(np.float32) / 255. y = np.clip(y, 0, 1) # clip to 0~1 y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW y = y.cuda(self.device_id) return y def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor: """ get the appearance feature of the image by F x: Bx3xHxW, normalized to 0~1 """ with torch.no_grad(): with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.cfg.flag_use_half_precision): feature_3d = self.appearance_feature_extractor(x) return feature_3d.float() def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict: """ get the implicit keypoint information x: Bx3xHxW, normalized to 0~1 flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp' """ with torch.no_grad(): with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.cfg.flag_use_half_precision): kp_info = self.motion_extractor(x) if self.cfg.flag_use_half_precision: # float the dict for k, v in kp_info.items(): if isinstance(v, torch.Tensor): kp_info[k] = v.float() flag_refine_info: bool = kwargs.get('flag_refine_info', True) if flag_refine_info: bs = kp_info['kp'].shape[0] kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1 kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1 kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1 kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3 kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3 return kp_info def get_pose_dct(self, kp_info: dict) -> dict: pose_dct = dict( pitch=headpose_pred_to_degree(kp_info['pitch']).item(), yaw=headpose_pred_to_degree(kp_info['yaw']).item(), roll=headpose_pred_to_degree(kp_info['roll']).item(), ) return pose_dct def get_fs_and_kp_info(self, source_prepared, driving_first_frame): # get the canonical keypoints of source image by M source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True) source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll']) # get the canonical keypoints of first driving frame by M driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True) driving_first_frame_rotation = get_rotation_matrix( driving_first_frame_kp_info['pitch'], driving_first_frame_kp_info['yaw'], driving_first_frame_kp_info['roll'] ) # get feature volume by F source_feature_3d = self.extract_feature_3d(source_prepared) return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation def transform_keypoint(self, kp_info: dict): """ transform the implicit keypoints with the pose, shift, and expression deformation kp: BxNx3 """ kp = kp_info['kp'] # (bs, k, 3) pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll'] t, exp = kp_info['t'], kp_info['exp'] scale = kp_info['scale'] pitch = headpose_pred_to_degree(pitch) yaw = headpose_pred_to_degree(yaw) roll = headpose_pred_to_degree(roll) bs = kp.shape[0] if kp.ndim == 2: num_kp = kp.shape[1] // 3 # Bx(num_kpx3) else: num_kp = kp.shape[1] # Bxnum_kpx3 rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3) # Eqn.2: s * (R * x_c,s + exp) + t kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3) kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3) kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty return kp_transformed def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor: """ kp_source: BxNx3 eye_close_ratio: Bx3 Return: Bx(3*num_kp+2) """ feat_eye = concat_feat(kp_source, eye_close_ratio) with torch.no_grad(): delta = self.stitching_retargeting_module['eye'](feat_eye) return delta def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor: """ kp_source: BxNx3 lip_close_ratio: Bx2 """ feat_lip = concat_feat(kp_source, lip_close_ratio) with torch.no_grad(): delta = self.stitching_retargeting_module['lip'](feat_lip) return delta def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ kp_source: BxNx3 kp_driving: BxNx3 Return: Bx(3*num_kp+2) """ feat_stiching = concat_feat(kp_source, kp_driving) with torch.no_grad(): delta = self.stitching_retargeting_module['stitching'](feat_stiching) return delta def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ conduct the stitching kp_source: Bxnum_kpx3 kp_driving: Bxnum_kpx3 """ if self.stitching_retargeting_module is not None: bs, num_kp = kp_source.shape[:2] kp_driving_new = kp_driving.clone() delta = self.stitch(kp_source, kp_driving_new) delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3 delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2 kp_driving_new += delta_exp kp_driving_new[..., :2] += delta_tx_ty return kp_driving_new return kp_driving def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ get the image after the warping of the implicit keypoints feature_3d: Bx32x16x64x64, feature volume kp_source: BxNx3 kp_driving: BxNx3 """ # The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i)) with torch.no_grad(): with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.cfg.flag_use_half_precision): # get decoder input ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving) # decode ret_dct['out'] = self.spade_generator(feature=ret_dct['out']) # float the dict if self.cfg.flag_use_half_precision: for k, v in ret_dct.items(): if isinstance(v, torch.Tensor): ret_dct[k] = v.float() return ret_dct def parse_output(self, out: torch.Tensor) -> np.ndarray: """ construct the output as standard return: 1xHxWx3, uint8 """ out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3 out = np.clip(out, 0, 1) # clip to 0~1 out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255 return out def calc_retargeting_ratio(self, source_lmk, driving_lmk_lst): input_eye_ratio_lst = [] input_lip_ratio_lst = [] for lmk in driving_lmk_lst: # for eyes retargeting input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None])) # for lip retargeting input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None])) return input_eye_ratio_lst, input_lip_ratio_lst def calc_combined_eye_ratio(self, input_eye_ratio, source_lmk): eye_close_ratio = calc_eye_close_ratio(source_lmk[None]) eye_close_ratio_tensor = torch.from_numpy(eye_close_ratio).float().cuda(self.device_id) input_eye_ratio_tensor = torch.Tensor([input_eye_ratio[0][0]]).reshape(1, 1).cuda(self.device_id) # [c_s,eyes, c_d,eyes,i] combined_eye_ratio_tensor = torch.cat([eye_close_ratio_tensor, input_eye_ratio_tensor], dim=1) return combined_eye_ratio_tensor def calc_combined_lip_ratio(self, input_lip_ratio, source_lmk): lip_close_ratio = calc_lip_close_ratio(source_lmk[None]) lip_close_ratio_tensor = torch.from_numpy(lip_close_ratio).float().cuda(self.device_id) # [c_s,lip, c_d,lip,i] input_lip_ratio_tensor = torch.Tensor([input_lip_ratio[0]]).cuda(self.device_id) if input_lip_ratio_tensor.shape != [1, 1]: input_lip_ratio_tensor = input_lip_ratio_tensor.reshape(1, 1) combined_lip_ratio_tensor = torch.cat([lip_close_ratio_tensor, input_lip_ratio_tensor], dim=1) return combined_lip_ratio_tensor