import math import os from glob import glob from pathlib import Path from typing import Optional import cv2 import numpy as np import torch from einops import rearrange, repeat from omegaconf import OmegaConf from PIL import Image from torchvision.transforms import ToTensor from scripts.util.detection.nsfw_and_watermark_dectection import \ DeepFloydDataFiltering from sgm.inference.helpers import embed_watermark from sgm.util import default, instantiate_from_config from huggingface_hub import hf_hub_download import gradio as gr import uuid from simple_video_sample import sample num_frames = 25 num_steps = 30 model_config = "scripts/sampling/configs/svd_xt.yaml" device = "cuda" #hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints", token=os.getenv("HF_TOKEN")) css = ''' .gradio-container{max-width:850px !important} ''' def sample( input_path: str, num_frames: Optional[int] = 25, num_steps: Optional[int] = 30, version: str = "svd_xt", fps_id: int = 6, motion_bucket_id: int = 127, cond_aug: float = 0.02, seed: int = 23, decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. ): output_folder = str(uuid.uuid4()) sample(input_path, version, output_folder, decoding_t) return f"{output_folder}/000000.mp4" def get_unique_embedder_keys_from_conditioner(conditioner): return list(set([x.input_key for x in conditioner.embedders])) def get_batch(keys, value_dict, N, T, device): batch = {} batch_uc = {} for key in keys: if key == "fps_id": batch[key] = ( torch.tensor([value_dict["fps_id"]]) .to(device) .repeat(int(math.prod(N))) ) elif key == "motion_bucket_id": batch[key] = ( torch.tensor([value_dict["motion_bucket_id"]]) .to(device) .repeat(int(math.prod(N))) ) elif key == "cond_aug": batch[key] = repeat( torch.tensor([value_dict["cond_aug"]]).to(device), "1 -> b", b=math.prod(N), ) elif key == "cond_frames": batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) elif key == "cond_frames_without_noise": batch[key] = repeat( value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] ) else: batch[key] = value_dict[key] if T is not None: batch["num_video_frames"] = T for key in batch.keys(): if key not in batch_uc and isinstance(batch[key], torch.Tensor): batch_uc[key] = torch.clone(batch[key]) return batch, batch_uc def resize_image(image_path, output_size=(1024, 576)): with Image.open(image_path) as image: # Calculate aspect ratios target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size image_aspect = image.width / image.height # Aspect ratio of the original image # Resize then crop if the original image is larger if image_aspect > target_aspect: # Resize the image to match the target height, maintaining aspect ratio new_height = output_size[1] new_width = int(new_height * image_aspect) resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) # Calculate coordinates for cropping left = (new_width - output_size[0]) / 2 top = 0 right = (new_width + output_size[0]) / 2 bottom = output_size[1] else: # Resize the image to match the target width, maintaining aspect ratio new_width = output_size[0] new_height = int(new_width / image_aspect) resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) # Calculate coordinates for cropping left = 0 top = (new_height - output_size[1]) / 2 right = output_size[0] bottom = (new_height + output_size[1]) / 2 # Crop the image cropped_image = resized_image.crop((left, top, right, bottom)) return cropped_image with gr.Blocks(css=css) as demo: gr.Markdown('''# Stable Video Diffusion - Image2Video - XT Generate 25 frames of video from a single image with SDV-XT. [Join the waitlist](https://stability.ai/contact) for the text-to-video web experience ''') with gr.Column(): image = gr.Image(label="Upload your image (it will be center cropped to 1024x576)", type="filepath") generate_btn = gr.Button("Generate") #with gr.Accordion("Advanced options", open=False): # cond_aug = gr.Slider(label="Conditioning augmentation", value=0.02, minimum=0.0) # seed = gr.Slider(label="Seed", value=42, minimum=0, maximum=int(1e9), step=1) #decoding_t = gr.Slider(label="Decode frames at a time", value=6, minimum=1, maximum=14, interactive=False) # saving_fps = gr.Slider(label="Saving FPS", value=6, minimum=6, maximum=48, step=6) with gr.Column(): video = gr.Video() image.upload(fn=resize_image, inputs=image, outputs=image) generate_btn.click(fn=sample, inputs=[image], outputs=video, api_name="video") demo.launch()