File size: 14,696 Bytes
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import logging
from typing import Optional

import torch
import torch.nn as nn

from mmaudio.ext.autoencoder.edm2_utils import MPConv1D
from mmaudio.ext.autoencoder.vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D,
                                                 Upsample1D, nonlinearity)
from mmaudio.model.utils.distributions import DiagonalGaussianDistribution

log = logging.getLogger()

DATA_MEAN_80D = [
    -1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927,
    -1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728,
    -1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131,
    -1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280,
    -1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643,
    -1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436,
    -2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282,
    -2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673
]

DATA_STD_80D = [
    1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263,
    0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194,
    0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043,
    0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973,
    0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939,
    0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604,
    1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070
]

DATA_MEAN_128D = [
    -3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597,
    -2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033,
    -2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157,
    -3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782,
    -3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647,
    -3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795,
    -3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121,
    -4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960,
    -4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712,
    -5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120,
    -6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663,
    -7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628,
    -9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861
]

DATA_STD_128D = [
    2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659,
    2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557,
    2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182,
    2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991,
    2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900,
    2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817,
    2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609,
    2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812,
    2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451,
    2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877,
    2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164
]


class VAE(nn.Module):

    def __init__(
        self,
        *,
        data_dim: int,
        embed_dim: int,
        hidden_dim: int,
    ):
        super().__init__()

        if data_dim == 80:
            self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32).cuda())
            self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32).cuda())
        elif data_dim == 128:
            self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32).cuda())
            self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32).cuda())

        self.data_mean = self.data_mean.view(1, -1, 1)
        self.data_std = self.data_std.view(1, -1, 1)

        self.encoder = Encoder1D(
            dim=hidden_dim,
            ch_mult=(1, 2, 4),
            num_res_blocks=2,
            attn_layers=[3],
            down_layers=[0],
            in_dim=data_dim,
            embed_dim=embed_dim,
        )
        self.decoder = Decoder1D(
            dim=hidden_dim,
            ch_mult=(1, 2, 4),
            num_res_blocks=2,
            attn_layers=[3],
            down_layers=[0],
            in_dim=data_dim,
            out_dim=data_dim,
            embed_dim=embed_dim,
        )

        self.embed_dim = embed_dim
        # self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1)
        # self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1)

        self.initialize_weights()

    def initialize_weights(self):
        pass

    def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution:
        if normalize:
            x = self.normalize(x)
        moments = self.encoder(x)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor:
        dec = self.decoder(z)
        if unnormalize:
            dec = self.unnormalize(dec)
        return dec

    def normalize(self, x: torch.Tensor) -> torch.Tensor:
        return (x - self.data_mean) / self.data_std

    def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
        return x * self.data_std + self.data_mean

    def forward(
        self,
        x: torch.Tensor,
        sample_posterior: bool = True,
        rng: Optional[torch.Generator] = None,
        normalize: bool = True,
        unnormalize: bool = True,
    ) -> tuple[torch.Tensor, DiagonalGaussianDistribution]:

        posterior = self.encode(x, normalize=normalize)
        if sample_posterior:
            z = posterior.sample(rng)
        else:
            z = posterior.mode()
        dec = self.decode(z, unnormalize=unnormalize)
        return dec, posterior

    def load_weights(self, src_dict) -> None:
        self.load_state_dict(src_dict, strict=True)

    @property
    def device(self) -> torch.device:
        return next(self.parameters()).device

    def get_last_layer(self):
        return self.decoder.conv_out.weight

    def remove_weight_norm(self):
        for name, m in self.named_modules():
            if isinstance(m, MPConv1D):
                m.remove_weight_norm()
                log.debug(f"Removed weight norm from {name}")
        return self


class Encoder1D(nn.Module):

    def __init__(self,
                 *,
                 dim: int,
                 ch_mult: tuple[int] = (1, 2, 4, 8),
                 num_res_blocks: int,
                 attn_layers: list[int] = [],
                 down_layers: list[int] = [],
                 resamp_with_conv: bool = True,
                 in_dim: int,
                 embed_dim: int,
                 double_z: bool = True,
                 kernel_size: int = 3,
                 clip_act: float = 256.0):
        super().__init__()
        self.dim = dim
        self.num_layers = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.in_channels = in_dim
        self.clip_act = clip_act
        self.down_layers = down_layers
        self.attn_layers = attn_layers
        self.conv_in = MPConv1D(in_dim, self.dim, kernel_size=kernel_size)

        in_ch_mult = (1, ) + tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        # downsampling
        self.down = nn.ModuleList()
        for i_level in range(self.num_layers):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = dim * in_ch_mult[i_level]
            block_out = dim * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock1D(in_dim=block_in,
                                  out_dim=block_out,
                                  kernel_size=kernel_size,
                                  use_norm=True))
                block_in = block_out
                if i_level in attn_layers:
                    attn.append(AttnBlock1D(block_in))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level in down_layers:
                down.downsample = Downsample1D(block_in, resamp_with_conv)
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock1D(in_dim=block_in,
                                         out_dim=block_in,
                                         kernel_size=kernel_size,
                                         use_norm=True)
        self.mid.attn_1 = AttnBlock1D(block_in)
        self.mid.block_2 = ResnetBlock1D(in_dim=block_in,
                                         out_dim=block_in,
                                         kernel_size=kernel_size,
                                         use_norm=True)

        # end
        self.conv_out = MPConv1D(block_in,
                                 2 * embed_dim if double_z else embed_dim,
                                 kernel_size=kernel_size)

        self.learnable_gain = nn.Parameter(torch.zeros([]))

    def forward(self, x):

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_layers):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1])
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                h = h.clamp(-self.clip_act, self.clip_act)
                hs.append(h)
            if i_level in self.down_layers:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h)
        h = h.clamp(-self.clip_act, self.clip_act)

        # end
        h = nonlinearity(h)
        h = self.conv_out(h, gain=(self.learnable_gain + 1))
        return h


class Decoder1D(nn.Module):

    def __init__(self,
                 *,
                 dim: int,
                 out_dim: int,
                 ch_mult: tuple[int] = (1, 2, 4, 8),
                 num_res_blocks: int,
                 attn_layers: list[int] = [],
                 down_layers: list[int] = [],
                 kernel_size: int = 3,
                 resamp_with_conv: bool = True,
                 in_dim: int,
                 embed_dim: int,
                 clip_act: float = 256.0):
        super().__init__()
        self.ch = dim
        self.num_layers = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.in_channels = in_dim
        self.clip_act = clip_act
        self.down_layers = [i + 1 for i in down_layers]  # each downlayer add one

        # compute in_ch_mult, block_in and curr_res at lowest res
        block_in = dim * ch_mult[self.num_layers - 1]

        # z to block_in
        self.conv_in = MPConv1D(embed_dim, block_in, kernel_size=kernel_size)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
        self.mid.attn_1 = AttnBlock1D(block_in)
        self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_layers)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = dim * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True))
                block_in = block_out
                if i_level in attn_layers:
                    attn.append(AttnBlock1D(block_in))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level in self.down_layers:
                up.upsample = Upsample1D(block_in, resamp_with_conv)
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.conv_out = MPConv1D(block_in, out_dim, kernel_size=kernel_size)
        self.learnable_gain = nn.Parameter(torch.zeros([]))

    def forward(self, z):
        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h)
        h = h.clamp(-self.clip_act, self.clip_act)

        # upsampling
        for i_level in reversed(range(self.num_layers)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](h)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
                h = h.clamp(-self.clip_act, self.clip_act)
            if i_level in self.down_layers:
                h = self.up[i_level].upsample(h)

        h = nonlinearity(h)
        h = self.conv_out(h, gain=(self.learnable_gain + 1))
        return h


def VAE_16k(**kwargs) -> VAE:
    return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs)


def VAE_44k(**kwargs) -> VAE:
    return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs)


def get_my_vae(name: str, **kwargs) -> VAE:
    if name == '16k':
        return VAE_16k(**kwargs)
    if name == '44k':
        return VAE_44k(**kwargs)
    raise ValueError(f'Unknown model: {name}')


if __name__ == '__main__':
    network = get_my_vae('standard')

    # print the number of parameters in terms of millions
    num_params = sum(p.numel() for p in network.parameters()) / 1e6
    print(f'Number of parameters: {num_params:.2f}M')