Spaces:
Runtime error
Runtime error
File size: 37,933 Bytes
21c4e64 878fa33 21c4e64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
import numpy as np
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation
from torch import nn
import os
from utils.system_utils import mkdir_p
from plyfile import PlyData, PlyElement
from random import randint
from utils.sh_utils import RGB2SH
from utils.graphics_utils import BasicPointCloud
from utils.general_utils import strip_symmetric, build_scaling_rotation
from scene.deformation import deform_network
from scene.regulation import compute_plane_smoothness
def gaussian_3d_coeff(xyzs, covs):
# xyzs: [N, 3]
# covs: [N, 6]
x, y, z = xyzs[:, 0], xyzs[:, 1], xyzs[:, 2]
a, b, c, d, e, f = covs[:, 0], covs[:, 1], covs[:, 2], covs[:, 3], covs[:, 4], covs[:, 5]
# eps must be small enough !!!
inv_det = 1 / (a * d * f + 2 * e * c * b - e**2 * a - c**2 * d - b**2 * f + 1e-24)
inv_a = (d * f - e**2) * inv_det
inv_b = (e * c - b * f) * inv_det
inv_c = (e * b - c * d) * inv_det
inv_d = (a * f - c**2) * inv_det
inv_e = (b * c - e * a) * inv_det
inv_f = (a * d - b**2) * inv_det
power = -0.5 * (x**2 * inv_a + y**2 * inv_d + z**2 * inv_f) - x * y * inv_b - x * z * inv_c - y * z * inv_e
power[power > 0] = -1e10 # abnormal values... make weights 0
return torch.exp(power)
class GaussianModel:
def setup_functions(self):
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
actual_covariance = L @ L.transpose(1, 2)
symm = strip_symmetric(actual_covariance)
return symm
self.scaling_activation = torch.exp
self.scaling_inverse_activation = torch.log
self.covariance_activation = build_covariance_from_scaling_rotation
self.opacity_activation = torch.sigmoid
self.inverse_opacity_activation = inverse_sigmoid
self.rotation_activation = torch.nn.functional.normalize
def __init__(self, sh_degree : int, args):
self.active_sh_degree = 0
self.max_sh_degree = sh_degree
self._xyz = torch.empty(0)
# self._deformation = torch.empty(0)
self._deformation = deform_network(args)
# self.grid = TriPlaneGrid()
self._features_dc = torch.empty(0)
self._features_rest = torch.empty(0)
self._scaling = torch.empty(0)
self._rotation = torch.empty(0)
self._opacity = torch.empty(0)
self.max_radii2D = torch.empty(0)
self.xyz_gradient_accum = torch.empty(0)
self.denom = torch.empty(0)
self.optimizer = None
self.percent_dense = 0
self.spatial_lr_scale = 0
self._deformation_table = torch.empty(0)
self.setup_functions()
def capture(self):
return (
self.active_sh_degree,
self._xyz,
self._deformation.state_dict(),
self._deformation_table,
# self.grid,
self._features_dc,
self._features_rest,
self._scaling,
self._rotation,
self._opacity,
self.max_radii2D,
self.xyz_gradient_accum,
self.denom,
self.optimizer.state_dict(),
self.spatial_lr_scale,
)
def restore(self, model_args, training_args):
(self.active_sh_degree,
self._xyz,
self._deformation_table,
self._deformation,
# self.grid,
self._features_dc,
self._features_rest,
self._scaling,
self._rotation,
self._opacity,
self.max_radii2D,
xyz_gradient_accum,
denom,
opt_dict,
self.spatial_lr_scale) = model_args
self.training_setup(training_args)
self.xyz_gradient_accum = xyz_gradient_accum
self.denom = denom
self.optimizer.load_state_dict(opt_dict)
@property
def get_scaling(self):
return self.scaling_activation(self._scaling)
@property
def get_rotation(self):
return self.rotation_activation(self._rotation)
@property
def get_xyz(self):
return self._xyz
@property
def get_features(self):
features_dc = self._features_dc
features_rest = self._features_rest
return torch.cat((features_dc, features_rest), dim=1)
@property
def get_opacity(self):
return self.opacity_activation(self._opacity)
def get_deformed_everything(self, time):
means3D = self.get_xyz
time = torch.tensor(time).to(means3D.device).repeat(means3D.shape[0],1)
time = ((time.float() / self.T) - 0.5) * 2
opacity = self._opacity
scales = self._scaling
rotations = self._rotation
deformation_point = self._deformation_table
means3D_deform, scales_deform, rotations_deform, opacity_deform = self._deformation(means3D[deformation_point], scales[deformation_point],
rotations[deformation_point], opacity[deformation_point],
time[deformation_point])
means3D_final = means3D + means3D_deform
rotations_final = rotations + rotations_deform
scales_final = scales + scales_deform
opacity_final = opacity
return means3D_final, rotations_final, scales_final, opacity_final
@torch.no_grad()
def extract_fields_t(self, resolution=128, num_blocks=16, relax_ratio=1.5, t=0):
# resolution: resolution of field
block_size = 2 / num_blocks
assert resolution % block_size == 0
split_size = resolution // num_blocks
xyzs, rotation, scale, opacities = self.get_deformed_everything(t)
scale = self.scaling_activation(scale)
opacities = self.opacity_activation(opacities)
# pre-filter low opacity gaussians to save computation
mask = (opacities > 0.005).squeeze(1)
opacities = opacities[mask]
xyzs = xyzs[mask]
stds = scale[mask]
# normalize to ~ [-1, 1]
mn, mx = xyzs.amin(0), xyzs.amax(0)
self.center = (mn + mx) / 2
self.scale = 1.8 / (mx - mn).amax().item()
xyzs = (xyzs - self.center) * self.scale
stds = stds * self.scale
covs = self.covariance_activation(stds, 1, rotation[mask])
# tile
device = opacities.device
occ = torch.zeros([resolution] * 3, dtype=torch.float32, device=device)
X = torch.linspace(-1, 1, resolution).split(split_size)
Y = torch.linspace(-1, 1, resolution).split(split_size)
Z = torch.linspace(-1, 1, resolution).split(split_size)
# loop blocks (assume max size of gaussian is small than relax_ratio * block_size !!!)
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = torch.meshgrid(xs, ys, zs)
# sample points [M, 3]
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).to(device)
# in-tile gaussians mask
vmin, vmax = pts.amin(0), pts.amax(0)
vmin -= block_size * relax_ratio
vmax += block_size * relax_ratio
mask = (xyzs < vmax).all(-1) & (xyzs > vmin).all(-1)
# if hit no gaussian, continue to next block
if not mask.any():
continue
mask_xyzs = xyzs[mask] # [L, 3]
mask_covs = covs[mask] # [L, 6]
mask_opas = opacities[mask].view(1, -1) # [L, 1] --> [1, L]
# query per point-gaussian pair.
g_pts = pts.unsqueeze(1).repeat(1, mask_covs.shape[0], 1) - mask_xyzs.unsqueeze(0) # [M, L, 3]
g_covs = mask_covs.unsqueeze(0).repeat(pts.shape[0], 1, 1) # [M, L, 6]
# batch on gaussian to avoid OOM
batch_g = 1024
val = 0
for start in range(0, g_covs.shape[1], batch_g):
end = min(start + batch_g, g_covs.shape[1])
w = gaussian_3d_coeff(g_pts[:, start:end].reshape(-1, 3), g_covs[:, start:end].reshape(-1, 6)).reshape(pts.shape[0], -1) # [M, l]
val += (mask_opas[:, start:end] * w).sum(-1)
# kiui.lo(val, mask_opas, w)
occ[xi * split_size: xi * split_size + len(xs),
yi * split_size: yi * split_size + len(ys),
zi * split_size: zi * split_size + len(zs)] = val.reshape(len(xs), len(ys), len(zs))
return occ
def extract_mesh_t(self, path, density_thresh=1, t=0, resolution=128, decimate_target=1e5):
from mesh import Mesh
from mesh_utils import decimate_mesh, clean_mesh
os.makedirs(os.path.dirname(path), exist_ok=True)
occ = self.extract_fields_t(resolution, t=t).detach().cpu().numpy()
import mcubes
vertices, triangles = mcubes.marching_cubes(occ, density_thresh)
vertices = vertices / (resolution - 1.0) * 2 - 1
# transform back to the original space
vertices = vertices / self.scale + self.center.detach().cpu().numpy()
vertices, triangles = clean_mesh(vertices, triangles, remesh=True, remesh_size=0.015)
if decimate_target > 0 and triangles.shape[0] > decimate_target:
vertices, triangles = decimate_mesh(vertices, triangles, decimate_target)
v = torch.from_numpy(vertices.astype(np.float32)).contiguous().cuda()
f = torch.from_numpy(triangles.astype(np.int32)).contiguous().cuda()
print(
f"[INFO] marching cubes result: {v.shape} ({v.min().item()}-{v.max().item()}), {f.shape}"
)
mesh = Mesh(v=v, f=f, device='cuda')
return mesh
def get_covariance(self, scaling_modifier = 1):
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)
def oneupSHdegree(self):
if self.active_sh_degree < self.max_sh_degree:
self.active_sh_degree += 1
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float, time_line: int):
from simple_knn._C import distCUDA2
self.spatial_lr_scale = spatial_lr_scale
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
features[:, :3, 0 ] = fused_color
features[:, 3:, 1:] = 0.0
print("Number of points at initialisation : ", fused_point_cloud.shape[0])
dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
rots[:, 0] = 1
opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
self._deformation = self._deformation.to("cuda")
# self.grid = self.grid.to("cuda")
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
self._scaling = nn.Parameter(scales.requires_grad_(True))
self._rotation = nn.Parameter(rots.requires_grad_(True))
self._opacity = nn.Parameter(opacities.requires_grad_(True))
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
self._deformation_table = torch.gt(torch.ones((self.get_xyz.shape[0]),device="cuda"),0)
def training_setup(self, training_args):
self.percent_dense = training_args.percent_dense
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self._deformation_accum = torch.zeros((self.get_xyz.shape[0],3),device="cuda")
self.T = training_args.batch_size
if training_args.optimize_gaussians:
l = [
{'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"},
{'params': list(self._deformation.get_mlp_parameters()), 'lr': training_args.deformation_lr_init * self.spatial_lr_scale, "name": "deformation"},
{'params': list(self._deformation.get_grid_parameters()), 'lr': training_args.grid_lr_init * self.spatial_lr_scale, "name": "grid"},
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"},
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"},
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"},
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"},
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"}
]
else:
l = [
{'params': list(self._deformation.get_mlp_parameters()), 'lr': training_args.deformation_lr_init * self.spatial_lr_scale, "name": "deformation"},
{'params': list(self._deformation.get_grid_parameters()), 'lr': training_args.grid_lr_init * self.spatial_lr_scale, "name": "grid"},
]
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
lr_final=training_args.position_lr_final*self.spatial_lr_scale,
lr_delay_mult=training_args.position_lr_delay_mult,
max_steps=training_args.position_lr_max_steps)
self.deformation_scheduler_args = get_expon_lr_func(lr_init=training_args.deformation_lr_init*self.spatial_lr_scale,
lr_final=training_args.deformation_lr_final*self.spatial_lr_scale,
lr_delay_mult=training_args.deformation_lr_delay_mult,
max_steps=training_args.position_lr_max_steps)
self.grid_scheduler_args = get_expon_lr_func(lr_init=training_args.grid_lr_init*self.spatial_lr_scale,
lr_final=training_args.grid_lr_final*self.spatial_lr_scale,
lr_delay_mult=training_args.deformation_lr_delay_mult,
max_steps=training_args.position_lr_max_steps)
def update_learning_rate(self, iteration):
''' Learning rate scheduling per step '''
for param_group in self.optimizer.param_groups:
if param_group["name"] == "xyz":
lr = self.xyz_scheduler_args(iteration)
param_group['lr'] = lr
# return lr
if "grid" in param_group["name"]:
lr = self.grid_scheduler_args(iteration)
param_group['lr'] = lr
# return lr
elif param_group["name"] == "deformation":
lr = self.deformation_scheduler_args(iteration)
param_group['lr'] = lr
# return lr
def construct_list_of_attributes(self):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
l.append('opacity')
for i in range(self._scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(self._rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def compute_deformation(self,time):
deform = self._deformation[:,:,:time].sum(dim=-1)
xyz = self._xyz + deform
return xyz
def load_model(self, path, name):
print("loading model from exists{}".format(path))
weight_dict = torch.load(os.path.join(path, name+"_deformation.pth"),map_location="cuda")
self._deformation.load_state_dict(weight_dict)
self._deformation = self._deformation.to("cuda")
self._deformation_table = torch.gt(torch.ones((self.get_xyz.shape[0]),device="cuda"),0)
self._deformation_accum = torch.zeros((self.get_xyz.shape[0],3),device="cuda")
if os.path.exists(os.path.join(path, name+"_deformation_table.pth")):
self._deformation_table = torch.load(os.path.join(path, name+"_deformation_table.pth"),map_location="cuda")
if os.path.exists(os.path.join(path,name+"_deformation_accum.pth")):
self._deformation_accum = torch.load(os.path.join(path, name+"_deformation_accum.pth"),map_location="cuda")
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
def save_deformation(self, path, name):
torch.save(self._deformation.state_dict(),os.path.join(path, name+"_deformation.pth"))
torch.save(self._deformation_table,os.path.join(path, name+"_deformation_table.pth"))
torch.save(self._deformation_accum,os.path.join(path, name+"_deformation_accum.pth"))
def save_ply(self, path):
mkdir_p(os.path.dirname(path))
xyz = self._xyz.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
opacities = self._opacity.detach().cpu().numpy()
scale = self._scaling.detach().cpu().numpy()
rotation = self._rotation.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def save_frame_ply(self, path, t):
mkdir_p(os.path.dirname(path))
xyzs, rotation, scale, opacities = self.get_deformed_everything(t)
xyz = xyzs.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
opacities = opacities.detach().cpu().numpy()
scale = scale.detach().cpu().numpy()
rotation = rotation.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
# def save_frame_ply(self, path, t):
# mkdir_p(os.path.dirname(path))
# xyz = self._xyz.detach().cpu().numpy()
# normals = np.zeros_like(xyz)
# f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
# f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
# opacities = self._opacity.detach().cpu().numpy()
# scale = self._scaling.detach().cpu().numpy()
# rotation = self._rotation.detach().cpu().numpy()
# dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
# elements = np.empty(xyz.shape[0], dtype=dtype_full)
# attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
# elements[:] = list(map(tuple, attributes))
# el = PlyElement.describe(elements, 'vertex')
# PlyData([el]).write(path)
def reset_opacity(self):
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
self._opacity = optimizable_tensors["opacity"]
def load_ply(self, path):
self.spatial_lr_scale = 1
plydata = PlyData.read(path)
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
np.asarray(plydata.elements[0]["y"]),
np.asarray(plydata.elements[0]["z"])), axis=1)
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
features_dc = np.zeros((xyz.shape[0], 3, 1))
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
for idx, attr_name in enumerate(extra_f_names):
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
scales = np.zeros((xyz.shape[0], len(scale_names)))
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
rots = np.zeros((xyz.shape[0], len(rot_names)))
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True))
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True))
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True))
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True))
self.active_sh_degree = self.max_sh_degree
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
self._deformation = self._deformation.to("cuda")
self._deformation_table = torch.gt(torch.ones((self.get_xyz.shape[0]),device="cuda"),0) # everything deformed
print(self._xyz.shape)
def replace_tensor_to_optimizer(self, tensor, name):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group["name"] == name:
stored_state = self.optimizer.state.get(group['params'][0], None)
stored_state["exp_avg"] = torch.zeros_like(tensor)
stored_state["exp_avg_sq"] = torch.zeros_like(tensor)
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def _prune_optimizer(self, mask):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if len(group["params"]) > 1:
continue
stored_state = self.optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = stored_state["exp_avg"][mask]
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def prune_points(self, mask):
valid_points_mask = ~mask
optimizable_tensors = self._prune_optimizer(valid_points_mask)
self._xyz = optimizable_tensors["xyz"]
self._features_dc = optimizable_tensors["f_dc"]
self._features_rest = optimizable_tensors["f_rest"]
self._opacity = optimizable_tensors["opacity"]
self._scaling = optimizable_tensors["scaling"]
self._rotation = optimizable_tensors["rotation"]
self._deformation_accum = self._deformation_accum[valid_points_mask]
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]
self._deformation_table = self._deformation_table[valid_points_mask]
self.denom = self.denom[valid_points_mask]
self.max_radii2D = self.max_radii2D[valid_points_mask]
def cat_tensors_to_optimizer(self, tensors_dict):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if len(group["params"])>1:continue
assert len(group["params"]) == 1
extension_tensor = tensors_dict[group["name"]]
stored_state = self.optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_deformation_table):
d = {"xyz": new_xyz,
"f_dc": new_features_dc,
"f_rest": new_features_rest,
"opacity": new_opacities,
"scaling" : new_scaling,
"rotation" : new_rotation,
# "deformation": new_deformation
}
optimizable_tensors = self.cat_tensors_to_optimizer(d)
self._xyz = optimizable_tensors["xyz"]
self._features_dc = optimizable_tensors["f_dc"]
self._features_rest = optimizable_tensors["f_rest"]
self._opacity = optimizable_tensors["opacity"]
self._scaling = optimizable_tensors["scaling"]
self._rotation = optimizable_tensors["rotation"]
# self._deformation = optimizable_tensors["deformation"]
self._deformation_table = torch.cat([self._deformation_table,new_deformation_table],-1)
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self._deformation_accum = torch.zeros((self.get_xyz.shape[0], 3), device="cuda")
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
n_init_points = self.get_xyz.shape[0]
# Extract points that satisfy the gradient condition
padded_grad = torch.zeros((n_init_points), device="cuda")
padded_grad[:grads.shape[0]] = grads.squeeze()
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)
if not selected_pts_mask.any():
return
stds = self.get_scaling[selected_pts_mask].repeat(N,1)
means =torch.zeros((stds.size(0), 3),device="cuda")
samples = torch.normal(mean=means, std=stds)
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
new_opacity = self._opacity[selected_pts_mask].repeat(N,1)
new_deformation_table = self._deformation_table[selected_pts_mask].repeat(N)
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation, new_deformation_table)
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
self.prune_points(prune_filter)
def densify_and_clone(self, grads, grad_threshold, scene_extent):
# Extract points that satisfy the gradient condition
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
new_xyz = self._xyz[selected_pts_mask]
# - 0.001 * self._xyz.grad[selected_pts_mask]
new_features_dc = self._features_dc[selected_pts_mask]
new_features_rest = self._features_rest[selected_pts_mask]
new_opacities = self._opacity[selected_pts_mask]
new_scaling = self._scaling[selected_pts_mask]
new_rotation = self._rotation[selected_pts_mask]
new_deformation_table = self._deformation_table[selected_pts_mask]
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_deformation_table)
def prune(self, min_opacity, extent, max_screen_size):
prune_mask = (self.get_opacity < min_opacity).squeeze()
# prune_mask_2 = torch.logical_and(self.get_opacity <= inverse_sigmoid(0.101 , dtype=torch.float, device="cuda"), self.get_opacity >= inverse_sigmoid(0.999 , dtype=torch.float, device="cuda"))
# prune_mask = torch.logical_or(prune_mask, prune_mask_2)
# deformation_sum = abs(self._deformation).sum(dim=-1).mean(dim=-1)
# deformation_mask = (deformation_sum < torch.quantile(deformation_sum, torch.tensor([0.5]).to("cuda")))
# prune_mask = prune_mask & deformation_mask
if max_screen_size:
big_points_vs = self.max_radii2D > max_screen_size
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
prune_mask = torch.logical_or(prune_mask, big_points_vs)
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
self.prune_points(prune_mask)
torch.cuda.empty_cache()
def densify(self, max_grad, min_opacity, extent, max_screen_size):
grads = self.xyz_gradient_accum / self.denom
grads[grads.isnan()] = 0.0
self.densify_and_clone(grads, max_grad, extent)
self.densify_and_split(grads, max_grad, extent)
def standard_constaint(self):
means3D = self._xyz.detach()
scales = self._scaling.detach()
rotations = self._rotation.detach()
opacity = self._opacity.detach()
time = torch.tensor(0).to("cuda").repeat(means3D.shape[0],1)
means3D_deform, scales_deform, rotations_deform, _ = self._deformation(means3D, scales, rotations, opacity, time)
position_error = (means3D_deform - means3D)**2
rotation_error = (rotations_deform - rotations)**2
scaling_erorr = (scales_deform - scales)**2
return position_error.mean() + rotation_error.mean() + scaling_erorr.mean()
def add_densification_stats(self, viewspace_point_tensor, update_filter):
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor[update_filter,:2], dim=-1, keepdim=True)
self.denom[update_filter] += 1
@torch.no_grad()
def update_deformation_table(self,threshold):
# print("origin deformation point nums:",self._deformation_table.sum())
self._deformation_table = torch.gt(self._deformation_accum.max(dim=-1).values/100,threshold)
def print_deformation_weight_grad(self):
for name, weight in self._deformation.named_parameters():
if weight.requires_grad:
if weight.grad is None:
print(name," :",weight.grad)
else:
if weight.grad.mean() != 0:
print(name," :",weight.grad.mean(), weight.grad.min(), weight.grad.max())
print("-"*50)
def _plane_regulation(self):
multi_res_grids = self._deformation.deformation_net.grid.grids
total = 0
# model.grids is 6 x [1, rank * F_dim, reso, reso]
for grids in multi_res_grids:
if len(grids) == 3:
time_grids = []
else:
time_grids = [0,1,3]
for grid_id in time_grids:
total += compute_plane_smoothness(grids[grid_id])
return total
def _time_regulation(self):
multi_res_grids = self._deformation.deformation_net.grid.grids
total = 0
# model.grids is 6 x [1, rank * F_dim, reso, reso]
for grids in multi_res_grids:
if len(grids) == 3:
time_grids = []
else:
time_grids =[2, 4, 5]
for grid_id in time_grids:
total += compute_plane_smoothness(grids[grid_id])
return total
def _l1_regulation(self):
# model.grids is 6 x [1, rank * F_dim, reso, reso]
multi_res_grids = self._deformation.deformation_net.grid.grids
total = 0.0
for grids in multi_res_grids:
if len(grids) == 3:
continue
else:
# These are the spatiotemporal grids
spatiotemporal_grids = [2, 4, 5]
for grid_id in spatiotemporal_grids:
total += torch.abs(1 - grids[grid_id]).mean()
return total
def compute_regulation(self, time_smoothness_weight, l1_time_planes_weight, plane_tv_weight):
return plane_tv_weight * self._plane_regulation() + time_smoothness_weight * self._time_regulation() + l1_time_planes_weight * self._l1_regulation()
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
grads = self.xyz_gradient_accum / self.denom
grads[grads.isnan()] = 0.0
self.densify_and_clone(grads, max_grad, extent)
self.densify_and_split(grads, max_grad, extent)
prune_mask = (self.get_opacity < min_opacity).squeeze()
if max_screen_size:
big_points_vs = self.max_radii2D > max_screen_size
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
self.prune_points(prune_mask)
torch.cuda.empty_cache()
|