File size: 12,885 Bytes
9882e38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import time

import gradio
import numpy as np
import torch
from transformers import LogitsProcessor

from modules import html_generator, shared

params = {
    'active': True,
    'color_by_perplexity': False,
    'color_by_probability': False,
    'ppl_scale': 15.0,  # No slider for this right now, because I don't think it really needs to be changed. Very large perplexity scores don't show up often.
    'probability_dropdown': False,
    'verbose': False  # For debugging mostly
}


class PerplexityLogits(LogitsProcessor):
    def __init__(self, verbose=False):
        self.generated_token_ids = []
        self.selected_probs = []
        self.top_token_ids_list = []
        self.top_probs_list = []
        self.perplexities_list = []
        self.last_probs = None
        self.verbose = verbose

    def __call__(self, input_ids, scores):
        # t0 = time.time()
        probs = torch.softmax(scores, dim=-1, dtype=torch.float)
        log_probs = torch.nan_to_num(torch.log(probs))  # Note: This is to convert log(0) nan to 0, but probs*log_probs makes this 0 not affect the perplexity.
        entropy = -torch.sum(probs * log_probs)
        entropy = entropy.cpu().numpy()
        perplexity = round(float(np.exp(entropy)), 4)
        self.perplexities_list.append(perplexity)
        last_token_id = int(input_ids[0][-1].cpu().numpy().item())
        # Store the generated tokens (not sure why this isn't accessible in the output endpoint!)
        self.generated_token_ids.append(last_token_id)
        # Get last probability, and add to the list if it wasn't there
        if len(self.selected_probs) > 0:
            # Is the selected token in the top tokens?
            if self.verbose:
                print('Probs: Token after', shared.tokenizer.decode(last_token_id))
                print('Probs:', [shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1][0]])
                print('Probs:', [round(float(prob), 4) for prob in self.top_probs_list[-1][0]])
            if last_token_id in self.top_token_ids_list[-1][0]:
                idx = self.top_token_ids_list[-1][0].index(last_token_id)
                self.selected_probs.append(self.top_probs_list[-1][0][idx])
            else:
                self.top_token_ids_list[-1][0].append(last_token_id)
                last_prob = round(float(self.last_probs[last_token_id]), 4)
                self.top_probs_list[-1][0].append(last_prob)
                self.selected_probs.append(last_prob)
        else:
            self.selected_probs.append(1.0)  # Placeholder for the last token of the prompt

        if self.verbose:
            pplbar = "-"
            if not np.isnan(perplexity):
                pplbar = "*" * round(perplexity)
            print(f"PPL: Token after {shared.tokenizer.decode(last_token_id)}\t{perplexity:.2f}\t{pplbar}")

        # Get top 5 probabilities
        top_tokens_and_probs = torch.topk(probs, 5)
        top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist()
        top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist()

        self.top_token_ids_list.append(top_token_ids)
        self.top_probs_list.append(top_probs)

        probs = probs.cpu().numpy().flatten()
        self.last_probs = probs  # Need to keep this as a reference for top probs

        # t1 = time.time()
        # print(f"PPL Processor: {(t1-t0):.3f} s")
        # About 1 ms, though occasionally up to around 100 ms, not sure why...
        # Doesn't actually modify the logits!
        return scores


# Stores the perplexity and top probabilities
ppl_logits_processor = None


def logits_processor_modifier(logits_processor_list, input_ids):
    global ppl_logits_processor
    if params['active']:
        ppl_logits_processor = PerplexityLogits(verbose=params['verbose'])
        logits_processor_list.append(ppl_logits_processor)


def output_modifier(text):
    global ppl_logits_processor
    # t0 = time.time()

    if not params['active']:
        return text

    # TODO: It's probably more efficient to do this above rather than modifying all these lists
    # Remove last element of perplexities_list, top_token_ids_list, top_tokens_list, top_probs_list since everything is off by one because this extension runs before generation
    perplexities = ppl_logits_processor.perplexities_list[:-1]
    top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1]
    top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids[0]] for top_token_ids in top_token_ids_list]
    top_probs_list = ppl_logits_processor.top_probs_list[:-1]
    # Remove first element of generated_token_ids, generated_tokens, selected_probs because they are for the last token of the prompt
    gen_token_ids = ppl_logits_processor.generated_token_ids[1:]
    gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids]
    sel_probs = ppl_logits_processor.selected_probs[1:]

    end_part = '</div></div>' if params['probability_dropdown'] else '</span>'  # Helps with finding the index after replacing part of the text.

    i = 0
    for token, prob, ppl, top_tokens, top_probs in zip(gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list):
        color = 'ffffff'
        if params['color_by_probability'] and params['color_by_perplexity']:
            color = probability_perplexity_color_scale(prob, ppl)
        elif params['color_by_perplexity']:
            color = perplexity_color_scale(ppl)
        elif params['color_by_probability']:
            color = probability_color_scale(prob)
        if token in text[i:]:
            if params['probability_dropdown']:
                text = text[:i] + text[i:].replace(token, add_dropdown_html(token, color, top_tokens, top_probs[0], ppl), 1)
            else:
                text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
            i += text[i:].find(end_part) + len(end_part)

    # Use full perplexity list for calculating the average here.
    print('Average perplexity:', round(np.mean(ppl_logits_processor.perplexities_list[:-1]), 4))
    # t1 = time.time()
    # print(f"Modifier: {(t1-t0):.3f} s")
    # About 50 ms
    return text


def probability_color_scale(prob):
    '''
    Green-yellow-red color scale
    '''

    rv = 0
    gv = 0
    if prob <= 0.5:
        rv = 'ff'
        gv = hex(int(255 * prob * 2))[2:]
        if len(gv) < 2:
            gv = '0' * (2 - len(gv)) + gv
    else:
        rv = hex(int(255 - 255 * (prob - 0.5) * 2))[2:]
        gv = 'ff'
        if len(rv) < 2:
            rv = '0' * (2 - len(rv)) + rv

    return rv + gv + '00'


def perplexity_color_scale(ppl):
    '''
    Red component only, white for 0 perplexity (sorry if you're not in dark mode)
    '''
    value = hex(max(int(255.0 - params['ppl_scale'] * (float(ppl) - 1.0)), 0))[2:]
    if len(value) < 2:
        value = '0' * (2 - len(value)) + value

    return 'ff' + value + value


def probability_perplexity_color_scale(prob, ppl):
    '''
    Green-yellow-red for probability and blue component for perplexity
    '''

    rv = 0
    gv = 0
    bv = hex(min(max(int(params['ppl_scale'] * (float(ppl) - 1.0)), 0), 255))[2:]
    if len(bv) < 2:
        bv = '0' * (2 - len(bv)) + bv

    if prob <= 0.5:
        rv = 'ff'
        gv = hex(int(255 * prob * 2))[2:]
        if len(gv) < 2:
            gv = '0' * (2 - len(gv)) + gv
    else:
        rv = hex(int(255 - 255 * (prob - 0.5) * 2))[2:]
        gv = 'ff'
        if len(rv) < 2:
            rv = '0' * (2 - len(rv)) + rv

    return rv + gv + bv


def add_color_html(token, color):
    return f'<span style="color: #{color}">{token}</span>'


# TODO: Major issue: Applying this to too many tokens will cause a permanent slowdown in generation speed until the messages are removed from the history.
# I think the issue is from HTML elements taking up space in the visible history, and things like history deepcopy add latency proportional to the size of the history.
# Potential solution is maybe to modify the main generation code to send just the internal text and not the visible history, to avoid moving too much around.
# I wonder if we can also avoid using deepcopy here.
def add_dropdown_html(token, color, top_tokens, top_probs, perplexity=0):
    html = f'<div class="hoverable"><span style="color: #{color}">{token}</span><div class="dropdown"><table class="dropdown-content"><tbody>'
    for token_option, prob in zip(top_tokens, top_probs):
        # TODO: Bold for selected token?
        # Using divs prevented the problem of divs inside spans causing issues.
        # Now the problem is that divs show the same whitespace of one space between every token.
        # There is probably some way to fix this in CSS that I don't know about.
        row_color = probability_color_scale(prob)
        row_class = ' class="selected"' if token_option == token else ''
        html += f'<tr{row_class}><td style="color: #{row_color}">{token_option}</td><td style="color: #{row_color}">{prob:.4f}</td></tr>'
    if perplexity != 0:
        ppl_color = perplexity_color_scale(perplexity)
        html += f'<tr><td>Perplexity:</td><td style="color: #{ppl_color}">{perplexity:.4f}</td></tr>'
    html += '</tbody></table></div></div>'
    return html  # About 750 characters per token...


def custom_css():
    return """
        .dropdown {
            display: none;
            position: absolute;
            z-index: 50;
            background-color: var(--block-background-fill);
            box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
            width: max-content;
            overflow: visible;
            padding: 5px;
            border-radius: 10px;
            border: 1px solid var(--border-color-primary);
        }

        .dropdown-content {
            border: none;
            z-index: 50;
        }

        .dropdown-content tr.selected {
            background-color: var(--block-label-background-fill);
        }

        .dropdown-content td {
            color: var(--body-text-color);
        }

        .hoverable {
            color: var(--body-text-color);
            position: relative;
            display: inline-block;
            overflow: visible;
            font-size: 15px;
            line-height: 1.75;
            margin: 0;
            padding: 0;
        }

        .hoverable:hover .dropdown {
            display: block;
        }

        pre {
            white-space: pre-wrap;
        }

        # TODO: This makes the hover menus extend outside the bounds of the chat area, which is good.
        # However, it also makes the scrollbar disappear, which is bad.
        # The scroll bar needs to still be present. So for now, we can't see dropdowns that extend past the edge of the chat area.
        #.chat {
        #    overflow-y: auto;
        #}
    """


# Monkeypatch applied to html_generator.py
# We simply don't render markdown into HTML. We wrap everything in <pre> tags to preserve whitespace
# formatting. If you're coloring tokens by perplexity or probability, or especially if you're using
# the probability dropdown, you probably care more about seeing the tokens the model actually outputted
# rather than rendering ```code blocks``` or *italics*.
def convert_to_markdown(string):
    return '<pre>' + string + '</pre>'


html_generator.convert_to_markdown = convert_to_markdown


def ui():
    def update_active_check(x):
        params.update({'active': x})

    def update_color_by_ppl_check(x):
        params.update({'color_by_perplexity': x})

    def update_color_by_prob_check(x):
        params.update({'color_by_probability': x})

    def update_prob_dropdown_check(x):
        params.update({'probability_dropdown': x})

    active_check = gradio.Checkbox(value=True, label="Compute probabilities and perplexity scores", info="Activate this extension. Note that this extension currently does not work with exllama or llama.cpp.")
    color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.")
    color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.")
    prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown", info="Hover over a token to show a dropdown of top token probabilities. Currently slightly buggy with whitespace between tokens.")

    active_check.change(update_active_check, active_check, None)
    color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None)
    color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None)
    prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None)