FreshBench / get_loss /my_get_logit.py
jijivski
move to sribd
0bf42ca
import logging
import warnings
import os
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import transformers
import torch
import gc
from torch.utils.data import DataLoader, TensorDataset
from torch.nn.utils.rnn import pack_padded_sequence
from calc_metrics import calculate_log_sum,calculate_log_last
import torch.nn.functional as F
import logging
import time
import traceback
import datetime
doday=datetime.datetime.now().strftime("%Y-%m-%d")
# 配置日志
extra_info='fill'
# logging.basicConfig(level=logging.INFO,filename='/wangbenyou/chenghao/fersh_bench/log/app.log', filemode='a', format='%(name)s - %(levelname)s - %(message)s')
# logging.basicConfig(level=logging.INFO,filename=f'../log/app_jieduan_{extra_info}{doday}_year.log', filemode='a', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
import torch
import pdb
import json
paths=[
'/mntcephfs/data/med/fanyaxin/Qwen-7B-Chat',
]
# file_in_data_folder='2024-01-04_18'
# file_in_data_folder='2023-12-31'
file_in_data_folder='2023-12-27'
# file_in_data_folder='2020_100'
# file_in_data_folder='2020'
# file_in_data_folder='2014'
# file_in_data_folder='2017'
# file_in_data_folder='2019'
# file_in_data_folder='2019'
# file_in_data_folder='rephrase_MMLU'
# file_in_data_folder='mock_MMLU'
# mmlu_mock_concat
# not arxiv not year, but rep MMLU
# 你的语料列表
import get_text
# file_dic_list_strings=get_text.file_dic_list_strings
limit_lines_per_file=10
file_dic_list_strings=get_text.get_text_from(file_in_data_folder,limit=limit_lines_per_file)
# file_dic_list_strings=get_text.get_mmlu_rephrase_text(directory='/mntnfs/med_data5/chenghao/fresh_eval/data/mmlu_rephrase_concat/gpt-4-1106-preview/')
# file_dic_list_strings=get_text.get_mmlu_rephrase_text(directory='/mntnfs/med_data5/chenghao/fresh_eval/data/mmlu_mock_concat/gpt-4-1106-preview/')
# file_in_data_folder='2024-01-03'
def get_rwkv_model_tokenizer(model_name):
os.environ['RWKV_JIT_ON'] = '1'
os.environ["RWKV_CUDA_ON"] = '1'
from rwkv.model import RWKV
from rwkv.utils import PIPELINE
model=RWKV(model=model_name, strategy='cuda fp16')
pipeline = PIPELINE(model, r"rwkv_vocab_v20230424")
tokenizer = pipeline.tokenizer
return model,tokenizer
def get_mamba_model_tokenizer(model_name):
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("/mntcephfs/data/med/chenghao/models/gpt-neox-20b_tokenizer")
model = MambaLMHeadModel.from_pretrained(model_name, device=device, dtype=torch.float16)
return model,tokenizer
def get_HF_model_tokenizer(model_name):
if 'llama_hf_13b' in model_name:
tokenizer = transformers.LlamaTokenizer.from_pretrained(model_name, unk_token="<unk>")
else:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
if 'zephyr' in model_name.lower():
model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto").eval()
else:
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True).eval()
return model,tokenizer
limit_lines_per_file=10
def run_model_on_dic(config):
config['clear_log_first']=True
logging.info("start up")
paths=config['model_path']
file_dic_list_strings=config['file_dic_list_strings']
detail_log_base=config['detail_log_path']
extract_log_base=config['extract_log_path']
max_sequence_length,max_str_len,limit_lines_per_file=config['max_sequence_length'],config['max_str_len'],config['limit_lines_per_file']
for model_name in tqdm(paths):
model_name=model_name.strip()
tmp_path=model_name[:-1] if model_name[-1]=='/' else model_name
short_model_name=tmp_path.split('/')[-1]
config['detail_log_path']=detail_log_base.replace('TOFILL',f'{short_model_name}')
config['extract_log_path']=extract_log_base.replace('TOFILL',f'{short_model_name}')
if 'clear_log_first' in config.keys() and config['clear_log_first'] is True:
with open( config['extract_log_path'],'w')as f:
f.write('')
with open( config['detail_log_path'],'w')as f:
f.write('')
print(f'\n log cleared! ')
logging.basicConfig(level=logging.INFO,filename=config['detail_log_path'], filemode='a', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',force=True)
print()
print('model_path',model_name)
print(f'extract_log_path:{config["extract_log_path"]}\ndetail_log_path:{config["detail_log_path"]}')
print()
try:
if config['model_type']=='RWKV':#'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
model,tokenizer=get_rwkv_model_tokenizer(model_name)
elif config['model_type']=='MAMBA':#('mamba' in model_name) or ('MAMBA'in model_name ):
model,tokenizer=get_mamba_model_tokenizer(model_name)
elif config['model_type']=='HF':#'HF' in model_name:
model,tokenizer=get_HF_model_tokenizer(model_name)
print(f'model device:{model.device}')
print('[tokenizer.cls_token]',[tokenizer.cls_token])
print('[tokenizer.sep_token]',[tokenizer.sep_token])
else:
raise Exception('model type not found')
# === get model and tokenizer
for file_name,corpus in file_dic_list_strings.items():
tokenized_corpus=[]
for text in corpus:
text=text[:max_str_len]
if config['model_type']=='RWKV':
#'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
tokenized_corpus.append(tokenizer.encode(text))
elif 'HF' in model_name and ('RWKV' in model_name):
tokenized_corpus.append(tokenizer(text, return_tensors="pt")['input_ids'])
elif ('mamba' in model_name) or ('MAMBA'in model_name ):
device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
tokenized_corpus.append(tokenizer(text, return_tensors="pt").input_ids.to(device=device))
else:
tokens = tokenizer.tokenize(text)
if tokenizer.cls_token:# attention here is not [None]
tokens = [tokenizer.cls_token] + tokens
if tokenizer.sep_token:
tokens = tokens +[tokenizer.sep_token]
input_ids = tokenizer.convert_tokens_to_ids(tokens)
tokenized_corpus.append(input_ids)
# tokenized_corpus.append(tokenizer(text, return_tensors="pt")['input_ids'])
processed_sequences = []
# 遍历 tokenized_corpus,截断或补全序列
for sequence in tokenized_corpus:
# print('len(sequence)',len(sequence))
if len(sequence) < max_sequence_length:
pass
# 补全序列
# sequence = sequence + [tokenizer.pad_token_id] * (max_sequence_length - len(sequence))
# print(f'longer {max_sequence_length - len(sequence)}')
elif len(sequence) > max_sequence_length:
# 截断序列
sequence = sequence[:max_sequence_length]
# 将处理后的序列添加到列表中
processed_sequences.append(sequence)
total_loss = 0.0
total_tokens = 0
# pdb.set_trace()
for enu,batch_input_ids in tqdm(enumerate(processed_sequences)):
# if 'test_fun_dev' in config['detail_log_path'] and enu>50:
# print(f'enu:{enu} batch_input_ids: break')
# break
batch_input_ids=torch.tensor(batch_input_ids).unsqueeze(0)
with torch.no_grad():
# 获取模型的输出
# pdb.set_trace()
if config['model_type']=='RWKV':
# if 'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
# print('rwkv1')
# pdb.set_trace()
# logits = model.forward(batch_input_ids.squeeze().to(torch.float32), None, full_output=True)[0]
logits = model.forward(batch_input_ids.squeeze().long(), None, full_output=True)[0]
# logits = model.forward(batch_input_ids.squeeze(), None, full_output=True)[0]
# print(logits.shape)
'''
tmp=torch.tensor(batch_input_ids).unsqueeze(0)
logits = model.forward(batch_input_ids.squeeze().long(), None)
logits = model.forward(batch_input_ids.long(), None,)[0]
for output in outputs:print(tokenizer.decode(output.tolist(), skip_special_tokens=True))
'''
# loss = torch.nn.functional.cross_entropy(logits[ :-1, :].view(-1, logits.shape[-1]).to(torch.float32), batch_input_ids[0,1:].to(logits.device).view(-1).to(torch.float32), reduction='none')
loss = torch.nn.functional.cross_entropy(logits[ :-1, :].view(-1, logits.shape[-1]).to(torch.float32), batch_input_ids[0,1:].to(logits.device).view(-1), reduction='none')
elif config['model_type']=='MAMBA':
# pdb.set_trace()
mamba_output = model.forward(batch_input_ids[0])#the shape should be like (1,length)
logits = mamba_output.logits
loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[0][:,1:].view(-1), reduction='none')
# pdb.set_trace()
elif config['model_type']=='HF':
if 'HF' in model_name and 'RWKV' in model_name:
# pdb.set_trace()
batch_input_ids=batch_input_ids.to(model.device)
logits = model.forward(batch_input_ids[0]).logits#the shape should be like (1,length)
loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[0][:,1:].view(-1), reduction='none')
'''
batch_input_ids=batch_input_ids.to(model.device)
HuggingFace-Download-Accelerator/
(Pdb) c
/mntnfs/med_data5/chenghao/fresh_eval/src/fun_base_fill_LLM.py:324: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'''
else:
outputs = model(batch_input_ids)
# 取出模型的logits
if 'chatglm3-6b' in model_name:
logits = outputs.logits.float()
else:
logits = outputs.logits
loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[:,1:].view(-1), reduction='none')
loss_sum = loss.sum()
loss_mean = loss.mean()
losses_list = loss.tolist()
# 准备要写入日志的数据
tmp_dic = {
'model_name': model_name,
'file_name': file_name,
'lengths': len(batch_input_ids[0]),
'length_str':len(corpus[enu][:max_str_len]),
'loss_sum': loss_sum.item(), # 转换为Python标准数据类型
'loss_mean': loss_mean.item(),
'losses_list': losses_list
}
import json
with open(config['detail_log_path'], 'a') as f:
json.dump(tmp_dic, f)
f.write("\n")
total_loss += loss.sum().item()
total_tokens += batch_input_ids.numel()
# 计算每个类别的平均损失
# pdb.set_trace()
average_loss = total_loss / total_tokens
avg_str_loss = total_loss/len(tokenized_corpus)
print(f"{file_name} total loss:", average_loss)
import json
logs = {
"model_name": model_name,
"file_name": file_name,
"processed_sequences": len(processed_sequences),
"average_loss": average_loss,
"avg_str_loss": avg_str_loss
}
# with open(f'/mntnfs/med_data5/chenghao/fresh_eval/log/year_arxiv/j_y_ans_{file_in_data_folder}.json', 'a') as f:
with open(config['extract_log_path'], 'a') as f:
json.dump(logs, f)
f.write("\n")
logging.info(logs)
except Exception as e:
logging.error(f"{model_name}, error:{e} ,detail:{traceback.format_exc()}")
with open(config['extract_log_path'], 'a') as f:
# json.dump(logs, f)
f.write(f"{model_name} failed \n")
print(f"{model_name} failed for {e} detail:{traceback.format_exc()}\n")
if __name__=='__main__':
config={}
print(file_in_data_folder)
file_dic_list_strings=get_text.get_text_from(file_in_data_folder,limit=limit_lines_per_file)
config['max_sequence_length'],config['max_str_len'],config['limit_lines_per_file']=2048,5000,10
config['extract_log_path']=f'/mntnfs/med_data5/chenghao/fresh_eval/log/test_fun_dev/extract.log'
config['detail_log_path']=f'/mntnfs/med_data5/chenghao/fresh_eval/log/test_fun_dev/detail.log'
config['model_path']='/mntnfs/med_data5/liangjuhao/models/TinyLlama-1.1B-Chat-v0.6'#paths[:1]
config['batch']=16
config['model_type']='HF'
print('start',config['model_path'])
config['file_dic_list_strings']=file_dic_list_strings
run_model_on_dic(config)