lab_PC commited on
Commit
52d0c82
1 Parent(s): 5e1514b

add logit calc

Browse files
Files changed (2) hide show
  1. get_loss/get_loss.py +294 -0
  2. get_loss/my_geyt.py +334 -0
get_loss/get_loss.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import packages
2
+ import os
3
+ from tqdm import tqdm
4
+ import warnings
5
+ import json
6
+ import torch.nn.functional as F
7
+ import torch
8
+ import gc
9
+ from transformers import AutoTokenizer, AutoModelForCausalLM
10
+ from datetime import datetime
11
+ import argparse
12
+
13
+
14
+ RWKV4_TOKENIZER_FILE = "./support/20B_tokenizer.json"
15
+
16
+
17
+ def load_list_from_json(file_path):
18
+ """
19
+ Loads a list of strings from a JSON file.
20
+
21
+ :param file_path: Path of the JSON file to be loaded.
22
+ :return: List of strings loaded from the JSON file.
23
+ """
24
+ with open(file_path, 'r', encoding='utf-8') as file:
25
+ return json.load(file)
26
+
27
+
28
+ def calculate_log_sum(logits, target_token_ids):
29
+ shifted_logits = logits[:-1, :]
30
+ shifted_targets = target_token_ids[1:]
31
+
32
+ log_probs = F.log_softmax(shifted_logits, dim=-1)
33
+
34
+ target_log_probs = -log_probs.gather(1, shifted_targets.unsqueeze(1)).squeeze()
35
+ # print(target_log_probs)
36
+
37
+ log_sum = torch.sum(target_log_probs, dim=-1)
38
+ # print(perplexity_sum)
39
+
40
+ return log_sum.item()
41
+
42
+
43
+ def print_model_parameters_in_billions(model):
44
+ total_params = sum(p.numel() for p in model.parameters())
45
+
46
+ total_params_billion = total_params / 1e9
47
+
48
+ print(f"Model parameters: {total_params_billion:.3f} billion")
49
+
50
+
51
+ def make_log(data_dict, folder_path):
52
+ if not os.path.exists(folder_path):
53
+ try:
54
+ os.makedirs(folder_path)
55
+ print(f"Directory created at {folder_path}")
56
+ except Exception as e:
57
+ print(f"Error creating directory: {e}")
58
+ return
59
+
60
+ timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
61
+ file_name = f"{timestamp}.json"
62
+ file_path = os.path.join(folder_path, file_name)
63
+
64
+ try:
65
+ with open(file_path, 'w') as file:
66
+ json.dump(data_dict, file, indent=4)
67
+ print(f"Dictionary saved successfully to {file_path}")
68
+ except Exception as e:
69
+ print(f"Error saving dictionary: {e}")
70
+
71
+
72
+ def load_rwkv(path):
73
+ os.environ['RWKV_JIT_ON'] = '1'
74
+ os.environ["RWKV_CUDA_ON"] = '1'
75
+
76
+ from rwkv.model import RWKV
77
+ from rwkv.utils import PIPELINE
78
+
79
+ rwkv_model = RWKV(model=path, strategy='cuda fp16')
80
+ rwkv_pipeline = PIPELINE(rwkv_model, r"rwkv_vocab_v20230424")
81
+ rwkv_tokenizer = rwkv_pipeline.tokenizer
82
+
83
+ return rwkv_model, rwkv_tokenizer
84
+
85
+
86
+ def load_rwkv4pile(path):
87
+ os.environ['RWKV_JIT_ON'] = '1'
88
+ os.environ["RWKV_CUDA_ON"] = '1'
89
+
90
+ from rwkv.model import RWKV
91
+ from rwkv.utils import PIPELINE
92
+
93
+ rwkv_model = RWKV(model=path, strategy='cuda fp16')
94
+ rwkv_pipeline = PIPELINE(rwkv_model, RWKV4_TOKENIZER_FILE)
95
+ rwkv_tokenizer = rwkv_pipeline.tokenizer
96
+
97
+ return rwkv_model, rwkv_tokenizer
98
+
99
+
100
+ def load_hf_model(path, cache_path):
101
+ hf_tokenizer = AutoTokenizer.from_pretrained(path)
102
+ if cache_path is not None:
103
+ hf_model = AutoModelForCausalLM.from_pretrained(path,
104
+ device_map="cuda",
105
+ trust_remote_code=True,
106
+ cache_dir=cache_path).eval()
107
+ else:
108
+ hf_model = AutoModelForCausalLM.from_pretrained(path,
109
+ device_map="cuda",
110
+ trust_remote_code=True).eval()
111
+
112
+ print_model_parameters_in_billions(hf_model)
113
+
114
+ return hf_model, hf_tokenizer
115
+
116
+
117
+ def load_mamba(path):
118
+ from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
119
+
120
+ mamba_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
121
+ mamba_model = MambaLMHeadModel.from_pretrained(path, device="cuda", dtype=torch.float16)
122
+ mamba_model.device = torch.device('cuda')
123
+
124
+ print_model_parameters_in_billions(mamba_model)
125
+
126
+ return mamba_model, mamba_tokenizer
127
+
128
+
129
+ def eval_rwkv(model, tokenizer, texts, chunk_size, v4pile=False):
130
+ rwkv_test_data = []
131
+ rwkv_token_length_list = []
132
+
133
+ for idx, sample in tqdm(enumerate(texts), total=len(texts)):
134
+
135
+ with torch.no_grad():
136
+
137
+ if v4pile:
138
+ input_seq = tokenizer.encode(sample).ids # v4
139
+ else:
140
+ input_seq = tokenizer.encode(sample)
141
+
142
+ input_length = len(input_seq)
143
+
144
+ neg_log_prob_temp = 0
145
+ for begin in range(0, input_length, chunk_size):
146
+ input_chunk = input_seq[begin: begin + chunk_size]
147
+
148
+ logit = model.forward(input_chunk, None, full_output=True)[0]
149
+
150
+ if len(input_chunk) == 1:
151
+ logit = logit.unsqueeze(0)
152
+
153
+ # log_sum = calculate_log_sum(logit, torch.tensor(input_chunk).cuda())
154
+
155
+ # neg_log_prob_temp += log_sum
156
+
157
+ # rwkv_token_length_list.append(input_length)
158
+ # rwkv_test_data.append(neg_log_prob_temp)
159
+
160
+ # data_dict = {
161
+ # 'neg_log_prob_sum': sum(rwkv_test_data) / len(rwkv_test_data),
162
+ # 'avg tokens': sum(rwkv_token_length_list) / len(rwkv_token_length_list),
163
+ # }
164
+
165
+ # print(f'log probability sum: {sum(rwkv_test_data) / len(rwkv_test_data):.2f}')
166
+ # print(f'avg tokens: {sum(rwkv_token_length_list) / len(rwkv_token_length_list):.0f}')
167
+
168
+ return logit
169
+
170
+
171
+ def eval_hf_model(model, tokenizer, texts, chunk_size):
172
+ data = []
173
+ token_length_list = []
174
+
175
+ for idx, sample in tqdm(enumerate(texts), total=len(texts)):
176
+
177
+ with torch.no_grad():
178
+
179
+ inputs = tokenizer(sample, return_tensors='pt')
180
+ inputs = inputs.to(model.device)
181
+
182
+ seq_length = inputs['input_ids'].shape[-1]
183
+
184
+ neg_log_prob_temp = 0
185
+ # for begin in range(0, seq_length, chunk_size):
186
+ input_chunk = inputs['input_ids'][:, begin: begin + chunk_size]
187
+
188
+ logit = model.forward(input_ids=input_chunk).logits[0, :, :]
189
+
190
+ # log_sum = calculate_log_sum(logit, input_chunk.squeeze(0))
191
+ # neg_log_prob_temp += log_sum
192
+
193
+ # token_length_list.append(seq_length)
194
+ # data.append(neg_log_prob_temp)
195
+
196
+ # data_dict = {
197
+ # 'neg_log_prob_sum': sum(data) / len(data),
198
+ # 'avg tokens': sum(token_length_list) / len(token_length_list),
199
+ # }
200
+
201
+ # print(f'log probability sum: {sum(data) / len(data):.2f}')
202
+ # print(f'avg tokens: {sum(token_length_list) / len(token_length_list):.0f}')
203
+
204
+ return logit
205
+
206
+
207
+ # if __name__ == '__main__':
208
+ # parser = argparse.ArgumentParser()
209
+
210
+ # parser.add_argument('--model', type=str, required=True, help='model name or path')
211
+ # parser.add_argument('--model_type', choices=['hf', 'rwkv', 'mamba', 'rwkv4pile'], required=True, help='model type')
212
+ # parser.add_argument('--data', type=str, required=True, help='data path (json file)')
213
+ # parser.add_argument('--log_path', type=str, default='./logs/', help='log file path')
214
+ # parser.add_argument('--model_cache', type=str, help='hugging face model cache')
215
+ # parser.add_argument('--chunk_size', type=int, default=1024, help='chunk size')
216
+
217
+
218
+ def run_get_loss(args):
219
+ # args = parser.parse_args()
220
+
221
+ # load data
222
+ texts = load_list_from_json(args.data)
223
+ print(f'data size: {len(texts)}')
224
+
225
+ # load model
226
+ if args.model_type == 'hf':
227
+ model, tokenizer = load_hf_model(args.model, args.model_cache)# tokenzier path, model path
228
+ elif args.model_type == 'rwkv':
229
+ model, tokenizer = load_rwkv(args.model)
230
+ elif args.model_type == 'mamba':
231
+ model, tokenizer = load_mamba(args.model)
232
+ elif args.model_type == 'rwkv4pile':
233
+ model, tokenizer = load_rwkv4pile(args.model)
234
+ else:
235
+ raise NotImplementedError
236
+
237
+ # eval
238
+ if args.model_type in ['hf', 'mamba']:
239
+ results = eval_hf_model(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size)
240
+ elif args.model_type == 'rwkv':
241
+ results = eval_rwkv(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size)
242
+ elif args.model_type == 'rwkv4pile':
243
+ results = eval_rwkv(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size, v4pile=True)
244
+ else:
245
+ raise NotImplementedError
246
+
247
+ # results['model_name_or_path'] = args.model
248
+ # results['data_path'] = args.data
249
+ # results['chunk_size'] = args.chunk_size
250
+
251
+ # make_log(results, args.log_path)
252
+
253
+ # print(json.dumps(results, indent=4, ensure_ascii=False))
254
+
255
+
256
+
257
+ if __name__ == '__main__':
258
+
259
+
260
+
261
+ def run_get_loss(input_string, model_type):
262
+ # load data
263
+ texts = [input_string]
264
+ print(f'data size: {len(texts)}')
265
+
266
+ # load model
267
+ if model_type == 'hf':
268
+ model, tokenizer = load_hf_model(args.model, args.model_cache)# tokenzier path, model path
269
+ elif model_type == 'rwkv':
270
+ model, tokenizer = load_rwkv(args.model)
271
+ elif model_type == 'mamba':
272
+ model, tokenizer = load_mamba(args.model)
273
+ elif model_type == 'rwkv4pile':
274
+ model, tokenizer = load_rwkv4pile(args.model)
275
+ else:
276
+ raise NotImplementedError
277
+
278
+ # eval
279
+ if model_type in ['hf', 'mamba']:
280
+ results = eval_hf_model(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size)
281
+ elif model_type == 'rwkv':
282
+ results = eval_rwkv(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size)
283
+ elif model_type == 'rwkv4pile':
284
+ results = eval_rwkv(model=model, tokenizer=tokenizer, texts=texts, chunk_size=args.chunk_size, v4pile=True)
285
+ else:
286
+ raise NotImplementedError
287
+
288
+ results['model_name_or_path'] = args.model
289
+ results['data_path'] = args.data
290
+ results['chunk_size'] = args.chunk_size
291
+
292
+ make_log(results, args.log_path)
293
+
294
+ print(json.dumps(results, indent=4, ensure_ascii=False))
get_loss/my_geyt.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import logging
3
+ import warnings
4
+ import os
5
+ from tqdm import tqdm
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
7
+ import transformers
8
+ import torch
9
+ import gc
10
+ from torch.utils.data import DataLoader, TensorDataset
11
+ from torch.nn.utils.rnn import pack_padded_sequence
12
+
13
+
14
+ from calc_metrics import calculate_log_sum,calculate_log_last
15
+ import torch.nn.functional as F
16
+ import logging
17
+ import time
18
+ import traceback
19
+
20
+ import datetime
21
+ doday=datetime.datetime.now().strftime("%Y-%m-%d")
22
+ # 配置日志
23
+ extra_info='fill'
24
+
25
+ # logging.basicConfig(level=logging.INFO,filename='/wangbenyou/chenghao/fersh_bench/log/app.log', filemode='a', format='%(name)s - %(levelname)s - %(message)s')
26
+ # logging.basicConfig(level=logging.INFO,filename=f'../log/app_jieduan_{extra_info}{doday}_year.log', filemode='a', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
27
+
28
+ import torch
29
+ import pdb
30
+ import json
31
+
32
+
33
+ paths=[
34
+ '/mntcephfs/data/med/fanyaxin/Qwen-7B-Chat',
35
+
36
+ ]
37
+
38
+
39
+
40
+ # file_in_data_folder='2024-01-04_18'
41
+ # file_in_data_folder='2023-12-31'
42
+ file_in_data_folder='2023-12-27'
43
+ # file_in_data_folder='2020_100'
44
+ # file_in_data_folder='2020'
45
+ # file_in_data_folder='2014'
46
+ # file_in_data_folder='2017'
47
+ # file_in_data_folder='2019'
48
+ # file_in_data_folder='2019'
49
+ # file_in_data_folder='rephrase_MMLU'
50
+ # file_in_data_folder='mock_MMLU'
51
+
52
+ # mmlu_mock_concat
53
+
54
+ # not arxiv not year, but rep MMLU
55
+ # 你的语料列表
56
+ import get_text
57
+ # file_dic_list_strings=get_text.file_dic_list_strings
58
+ limit_lines_per_file=10
59
+ file_dic_list_strings=get_text.get_text_from(file_in_data_folder,limit=limit_lines_per_file)
60
+ # file_dic_list_strings=get_text.get_mmlu_rephrase_text(directory='/mntnfs/med_data5/chenghao/fresh_eval/data/mmlu_rephrase_concat/gpt-4-1106-preview/')
61
+ # file_dic_list_strings=get_text.get_mmlu_rephrase_text(directory='/mntnfs/med_data5/chenghao/fresh_eval/data/mmlu_mock_concat/gpt-4-1106-preview/')
62
+
63
+
64
+
65
+ # file_in_data_folder='2024-01-03'
66
+
67
+ def get_rwkv_model_tokenizer(model_name):
68
+ os.environ['RWKV_JIT_ON'] = '1'
69
+ os.environ["RWKV_CUDA_ON"] = '1'
70
+ from rwkv.model import RWKV
71
+ from rwkv.utils import PIPELINE
72
+ model=RWKV(model=model_name, strategy='cuda fp16')
73
+ pipeline = PIPELINE(model, r"rwkv_vocab_v20230424")
74
+ tokenizer = pipeline.tokenizer
75
+ return model,tokenizer
76
+
77
+ def get_mamba_model_tokenizer(model_name):
78
+ from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
79
+ device = "cuda"
80
+ tokenizer = AutoTokenizer.from_pretrained("/mntcephfs/data/med/chenghao/models/gpt-neox-20b_tokenizer")
81
+ model = MambaLMHeadModel.from_pretrained(model_name, device=device, dtype=torch.float16)
82
+ return model,tokenizer
83
+
84
+
85
+ def get_HF_model_tokenizer(model_name):
86
+ if 'llama_hf_13b' in model_name:
87
+ tokenizer = transformers.LlamaTokenizer.from_pretrained(model_name, unk_token="<unk>")
88
+ else:
89
+ from transformers import AutoTokenizer, AutoModelForCausalLM
90
+
91
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
92
+
93
+ if 'zephyr' in model_name.lower():
94
+ model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto").eval()
95
+
96
+ else:
97
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True).eval()
98
+ return model,tokenizer
99
+
100
+ limit_lines_per_file=10
101
+
102
+ def run_model_on_dic(config):
103
+ config['clear_log_first']=True
104
+ logging.info("start up")
105
+ paths=config['model_path']
106
+ file_dic_list_strings=config['file_dic_list_strings']
107
+ detail_log_base=config['detail_log_path']
108
+ extract_log_base=config['extract_log_path']
109
+ max_sequence_length,max_str_len,limit_lines_per_file=config['max_sequence_length'],config['max_str_len'],config['limit_lines_per_file']
110
+
111
+ for model_name in tqdm(paths):
112
+ model_name=model_name.strip()
113
+ tmp_path=model_name[:-1] if model_name[-1]=='/' else model_name
114
+ short_model_name=tmp_path.split('/')[-1]
115
+ config['detail_log_path']=detail_log_base.replace('TOFILL',f'{short_model_name}')
116
+ config['extract_log_path']=extract_log_base.replace('TOFILL',f'{short_model_name}')
117
+ if 'clear_log_first' in config.keys() and config['clear_log_first'] is True:
118
+ with open( config['extract_log_path'],'w')as f:
119
+ f.write('')
120
+ with open( config['detail_log_path'],'w')as f:
121
+ f.write('')
122
+ print(f'\n log cleared! ')
123
+
124
+ logging.basicConfig(level=logging.INFO,filename=config['detail_log_path'], filemode='a', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',force=True)
125
+
126
+
127
+
128
+ print()
129
+ print('model_path',model_name)
130
+ print(f'extract_log_path:{config["extract_log_path"]}\ndetail_log_path:{config["detail_log_path"]}')
131
+ print()
132
+
133
+ try:
134
+ if config['model_type']=='RWKV':#'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
135
+ model,tokenizer=get_rwkv_model_tokenizer(model_name)
136
+
137
+
138
+ elif config['model_type']=='MAMBA':#('mamba' in model_name) or ('MAMBA'in model_name ):
139
+ model,tokenizer=get_mamba_model_tokenizer(model_name)
140
+
141
+
142
+ elif config['model_type']=='HF':#'HF' in model_name:
143
+
144
+ model,tokenizer=get_HF_model_tokenizer(model_name)
145
+ print(f'model device:{model.device}')
146
+ print('[tokenizer.cls_token]',[tokenizer.cls_token])
147
+ print('[tokenizer.sep_token]',[tokenizer.sep_token])
148
+ else:
149
+ raise Exception('model type not found')
150
+
151
+ # === get model and tokenizer
152
+
153
+ for file_name,corpus in file_dic_list_strings.items():
154
+
155
+ tokenized_corpus=[]
156
+ for text in corpus:
157
+ text=text[:max_str_len]
158
+ if config['model_type']=='RWKV':
159
+ #'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
160
+ tokenized_corpus.append(tokenizer.encode(text))
161
+
162
+ elif 'HF' in model_name and ('RWKV' in model_name):
163
+ tokenized_corpus.append(tokenizer(text, return_tensors="pt")['input_ids'])
164
+
165
+ elif ('mamba' in model_name) or ('MAMBA'in model_name ):
166
+ device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
167
+ tokenized_corpus.append(tokenizer(text, return_tensors="pt").input_ids.to(device=device))
168
+
169
+ else:
170
+ tokens = tokenizer.tokenize(text)
171
+ if tokenizer.cls_token:# attention here is not [None]
172
+ tokens = [tokenizer.cls_token] + tokens
173
+ if tokenizer.sep_token:
174
+ tokens = tokens +[tokenizer.sep_token]
175
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
176
+ tokenized_corpus.append(input_ids)
177
+ # tokenized_corpus.append(tokenizer(text, return_tensors="pt")['input_ids'])
178
+
179
+
180
+
181
+ processed_sequences = []
182
+
183
+ # 遍历 tokenized_corpus,截断或补全序列
184
+ for sequence in tokenized_corpus:
185
+ # print('len(sequence)',len(sequence))
186
+ if len(sequence) < max_sequence_length:
187
+ pass
188
+ # 补全序列
189
+ # sequence = sequence + [tokenizer.pad_token_id] * (max_sequence_length - len(sequence))
190
+ # print(f'longer {max_sequence_length - len(sequence)}')
191
+ elif len(sequence) > max_sequence_length:
192
+ # 截断序列
193
+ sequence = sequence[:max_sequence_length]
194
+
195
+ # 将处理后的序列添加到列表中
196
+ processed_sequences.append(sequence)
197
+
198
+
199
+ total_loss = 0.0
200
+ total_tokens = 0
201
+ # pdb.set_trace()
202
+
203
+ for enu,batch_input_ids in tqdm(enumerate(processed_sequences)):
204
+ # if 'test_fun_dev' in config['detail_log_path'] and enu>50:
205
+ # print(f'enu:{enu} batch_input_ids: break')
206
+ # break
207
+
208
+ batch_input_ids=torch.tensor(batch_input_ids).unsqueeze(0)
209
+
210
+ with torch.no_grad():
211
+ # 获取模型的输出
212
+ # pdb.set_trace()
213
+ if config['model_type']=='RWKV':
214
+ # if 'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
215
+ # print('rwkv1')
216
+ # pdb.set_trace()
217
+ # logits = model.forward(batch_input_ids.squeeze().to(torch.float32), None, full_output=True)[0]
218
+ logits = model.forward(batch_input_ids.squeeze().long(), None, full_output=True)[0]
219
+ # logits = model.forward(batch_input_ids.squeeze(), None, full_output=True)[0]
220
+ # print(logits.shape)
221
+ '''
222
+ tmp=torch.tensor(batch_input_ids).unsqueeze(0)
223
+ logits = model.forward(batch_input_ids.squeeze().long(), None)
224
+ logits = model.forward(batch_input_ids.long(), None,)[0]
225
+ for output in outputs:print(tokenizer.decode(output.tolist(), skip_special_tokens=True))
226
+
227
+ '''
228
+ # loss = torch.nn.functional.cross_entropy(logits[ :-1, :].view(-1, logits.shape[-1]).to(torch.float32), batch_input_ids[0,1:].to(logits.device).view(-1).to(torch.float32), reduction='none')
229
+ loss = torch.nn.functional.cross_entropy(logits[ :-1, :].view(-1, logits.shape[-1]).to(torch.float32), batch_input_ids[0,1:].to(logits.device).view(-1), reduction='none')
230
+
231
+ elif config['model_type']=='MAMBA':
232
+ # pdb.set_trace()
233
+ mamba_output = model.forward(batch_input_ids[0])#the shape should be like (1,length)
234
+ logits = mamba_output.logits
235
+ loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[0][:,1:].view(-1), reduction='none')
236
+ # pdb.set_trace()
237
+
238
+
239
+
240
+ elif config['model_type']=='HF':
241
+ if 'HF' in model_name and 'RWKV' in model_name:
242
+ # pdb.set_trace()
243
+ batch_input_ids=batch_input_ids.to(model.device)
244
+ logits = model.forward(batch_input_ids[0]).logits#the shape should be like (1,length)
245
+ loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[0][:,1:].view(-1), reduction='none')
246
+ '''
247
+ batch_input_ids=batch_input_ids.to(model.device)
248
+
249
+ HuggingFace-Download-Accelerator/
250
+ (Pdb) c
251
+ /mntnfs/med_data5/chenghao/fresh_eval/src/fun_base_fill_LLM.py:324: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
252
+ '''
253
+ else:
254
+ outputs = model(batch_input_ids)
255
+
256
+ # 取出模型的logits
257
+ if 'chatglm3-6b' in model_name:
258
+ logits = outputs.logits.float()
259
+ else:
260
+ logits = outputs.logits
261
+
262
+ loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[:,1:].view(-1), reduction='none')
263
+
264
+
265
+ loss_sum = loss.sum()
266
+ loss_mean = loss.mean()
267
+ losses_list = loss.tolist()
268
+
269
+ # 准备要写入日志的数据
270
+ tmp_dic = {
271
+ 'model_name': model_name,
272
+ 'file_name': file_name,
273
+ 'lengths': len(batch_input_ids[0]),
274
+ 'length_str':len(corpus[enu][:max_str_len]),
275
+ 'loss_sum': loss_sum.item(), # 转换为Python标准数据类型
276
+ 'loss_mean': loss_mean.item(),
277
+ 'losses_list': losses_list
278
+ }
279
+ import json
280
+ with open(config['detail_log_path'], 'a') as f:
281
+
282
+ json.dump(tmp_dic, f)
283
+ f.write("\n")
284
+
285
+ total_loss += loss.sum().item()
286
+ total_tokens += batch_input_ids.numel()
287
+
288
+ # 计算每个类别的平均损失
289
+ # pdb.set_trace()
290
+ average_loss = total_loss / total_tokens
291
+ avg_str_loss = total_loss/len(tokenized_corpus)
292
+
293
+
294
+ print(f"{file_name} total loss:", average_loss)
295
+ import json
296
+
297
+ logs = {
298
+ "model_name": model_name,
299
+ "file_name": file_name,
300
+ "processed_sequences": len(processed_sequences),
301
+ "average_loss": average_loss,
302
+ "avg_str_loss": avg_str_loss
303
+ }
304
+
305
+ # with open(f'/mntnfs/med_data5/chenghao/fresh_eval/log/year_arxiv/j_y_ans_{file_in_data_folder}.json', 'a') as f:
306
+ with open(config['extract_log_path'], 'a') as f:
307
+
308
+ json.dump(logs, f)
309
+ f.write("\n")
310
+
311
+ logging.info(logs)
312
+
313
+ except Exception as e:
314
+ logging.error(f"{model_name}, error:{e} ,detail:{traceback.format_exc()}")
315
+ with open(config['extract_log_path'], 'a') as f:
316
+ # json.dump(logs, f)
317
+ f.write(f"{model_name} failed \n")
318
+ print(f"{model_name} failed for {e} detail:{traceback.format_exc()}\n")
319
+
320
+ if __name__=='__main__':
321
+ config={}
322
+ print(file_in_data_folder)
323
+ file_dic_list_strings=get_text.get_text_from(file_in_data_folder,limit=limit_lines_per_file)
324
+ config['max_sequence_length'],config['max_str_len'],config['limit_lines_per_file']=2048,5000,10
325
+ config['extract_log_path']=f'/mntnfs/med_data5/chenghao/fresh_eval/log/test_fun_dev/extract.log'
326
+ config['detail_log_path']=f'/mntnfs/med_data5/chenghao/fresh_eval/log/test_fun_dev/detail.log'
327
+
328
+ config['model_path']='/mntnfs/med_data5/liangjuhao/models/TinyLlama-1.1B-Chat-v0.6'#paths[:1]
329
+ config['batch']=16
330
+ config['model_type']='HF'
331
+
332
+ print('start',config['model_path'])
333
+ config['file_dic_list_strings']=file_dic_list_strings
334
+ run_model_on_dic(config)