lab_PC commited on
Commit
df513ba
1 Parent(s): 968cdfb

test_remote

Browse files
Files changed (3) hide show
  1. __pycache__/app.cpython-37.pyc +0 -0
  2. app.py +129 -0
  3. requirements.txt +3 -0
__pycache__/app.cpython-37.pyc ADDED
Binary file (422 Bytes). View file
 
app.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import gradio as gr
2
+ # from transformers import AutoTokenizer
3
+
4
+ # # 第一个功能:基于输入文本和对应的损失值对文本进行着色展示
5
+ # def color_text(text_list=["hi", "FreshEval"], loss_list=[0.1,0.7]):
6
+ # """
7
+ # 根据损失值为文本着色。
8
+ # """
9
+ # highlighted_text = []
10
+ # for text, loss in zip(text_list, loss_list):
11
+ # # color = "#FF0000" if float(loss) > 0.5 else "#00FF00"
12
+ # color=loss
13
+ # highlighted_text.append({"text": text, "bg_color": color})
14
+ # return gr.HighlightedText(highlighted_text).get_html()
15
+
16
+ # # 第二个功能:根据 ID 列表和 tokenizer 将 ID 转换为文本,并展示
17
+ # def get_text(ids_list=[0.1,0.7], tokenizer=None):
18
+ # """
19
+ # 给定一个 ID 列表和 tokenizer 名称,将这些 ID 转换成文本。
20
+ # """
21
+ # return ['Hi', 'Adam']
22
+ # # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
23
+ # # text = tokenizer.decode(eval(ids_list), skip_special_tokens=True)
24
+ # # 这里只是简单地返回文本,但是可以根据实际需求添加颜色或其他样式
25
+ # # return text
26
+
27
+
28
+ # def get_ids_loss(text, tokenizer, model):
29
+ # """
30
+ # 给定一个文本,返回其对应的 IDs 和损失值。
31
+ # """
32
+ # # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
33
+ # # model = AutoModelForCausalLM.from_pretrained(model_name)
34
+ # # 这里只是简单地返回 IDs 和损失值,但是可以根据实际需求添加颜色或其他样式
35
+ # return [1, 2], [0.1, 0.7]
36
+
37
+
38
+ # def color_pipeline(text=["hi", "FreshEval"], model=None):
39
+ # """
40
+ # 给定一个文本,返回其对应的着色文本。
41
+ # """
42
+ # tokenizer=None
43
+ # ids, loss = get_ids_loss(text, tokenizer, model)
44
+ # text = get_text(ids, tokenizer)
45
+ # return color_text(text, loss)
46
+
47
+ # # 创建 Gradio 界面
48
+ # with gr.Blocks() as demo:
49
+ # with gr.Tab("color your text"):
50
+ # with gr.Row():
51
+ # text_input = gr.Textbox(label="input text", placeholder="input your text here...")
52
+ # # loss_input = gr.Number(label="loss")
53
+ # model_input = gr.Textbox(label="model name", placeholder="input your model name here...")
54
+ # color_text_output = gr.HTML(label="colored text")
55
+ # gr.Markdown("## Text Examples")
56
+ # # gr.Examples(
57
+ # # [["hi", "Adam"], [0.1,0.7]],
58
+ # # [text_input, loss_input],
59
+ # # cache_examples=True,
60
+ # # fn=color_text,
61
+ # # outputs=color_text_output
62
+ # # )
63
+ # color_text_button = gr.Button("color the text").click(color_pipeline, inputs=[text_input, model_input], outputs=color_text_output)
64
+
65
+
66
+ # date_time_input = gr.Textbox(label="the date when the text is generated")#TODO add date time input
67
+ # description_input = gr.Textbox(label="description of the text")
68
+ # submit_button = gr.Button("submit a post or record")
69
+ # #TODO add model and its score
70
+
71
+
72
+ # # with gr.Tab("ID 转文本展示"):
73
+ # # with gr.Row():
74
+ # # ids_input = gr.Textbox(label="输入 IDs (如 [101, 102, ...])")
75
+ # # tokenizer_input = gr.Textbox(label="Tokenizer 名称", value="bert-base-uncased")
76
+ # # show_text_output = gr.Textbox(label="转换后的文本")
77
+ # # show_text_button = gr.Button("转换并展示").click(show_text, inputs=[ids_input, tokenizer_input], outputs=show_text_output)
78
+
79
+ # with gr.Tab("model ppl with time"):
80
+ # '''
81
+ # see the matplotlib example, to see ppl with time, select the models
82
+ # '''
83
+
84
+
85
+ # with gr.Tab("model ppl with time"):
86
+ # '''
87
+ # see the matplotlib example, to see ppl with time, select the models
88
+ # '''
89
+
90
+
91
+
92
+ # demo.launch()
93
+
94
+
95
+
96
+ # import gradio as gr
97
+ # from transformers import pipeline
98
+
99
+
100
+ # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
101
+
102
+ # def predict(input_img):
103
+ # predictions = pipeline(input_img)
104
+ # return input_img, {p["label"]: p["score"] for p in predictions}
105
+
106
+ # gradio_app = gr.Interface(
107
+ # predict,
108
+ # inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
109
+ # outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
110
+ # title="Hot Dog? Or Not?",
111
+ # )
112
+
113
+ # if __name__ == "__main__":
114
+ # gradio_app.launch()
115
+
116
+
117
+
118
+ import gradio as gr
119
+
120
+ def greet(name, intensity):
121
+ return "Hello, " + name + "!" * int(intensity)
122
+
123
+ demo = gr.Interface(
124
+ fn=greet,
125
+ inputs=["text", "slider"],
126
+ outputs=["text"],
127
+ )
128
+
129
+ demo.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ lm-evaluation-harness
2
+ transformers
3
+ torch