Spaces:
Build error
Build error
lab_PC
commited on
Commit
·
df513ba
1
Parent(s):
968cdfb
test_remote
Browse files- __pycache__/app.cpython-37.pyc +0 -0
- app.py +129 -0
- requirements.txt +3 -0
__pycache__/app.cpython-37.pyc
ADDED
Binary file (422 Bytes). View file
|
|
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from transformers import AutoTokenizer
|
3 |
+
|
4 |
+
# # 第一个功能:基于输入文本和对应的损失值对文本进行着色展示
|
5 |
+
# def color_text(text_list=["hi", "FreshEval"], loss_list=[0.1,0.7]):
|
6 |
+
# """
|
7 |
+
# 根据损失值为文本着色。
|
8 |
+
# """
|
9 |
+
# highlighted_text = []
|
10 |
+
# for text, loss in zip(text_list, loss_list):
|
11 |
+
# # color = "#FF0000" if float(loss) > 0.5 else "#00FF00"
|
12 |
+
# color=loss
|
13 |
+
# highlighted_text.append({"text": text, "bg_color": color})
|
14 |
+
# return gr.HighlightedText(highlighted_text).get_html()
|
15 |
+
|
16 |
+
# # 第二个功能:根据 ID 列表和 tokenizer 将 ID 转换为文本,并展示
|
17 |
+
# def get_text(ids_list=[0.1,0.7], tokenizer=None):
|
18 |
+
# """
|
19 |
+
# 给定一个 ID 列表和 tokenizer 名称,将这些 ID 转换成文本。
|
20 |
+
# """
|
21 |
+
# return ['Hi', 'Adam']
|
22 |
+
# # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
23 |
+
# # text = tokenizer.decode(eval(ids_list), skip_special_tokens=True)
|
24 |
+
# # 这里只是简单地返回文本,但是可以根据实际需求添加颜色或其他样式
|
25 |
+
# # return text
|
26 |
+
|
27 |
+
|
28 |
+
# def get_ids_loss(text, tokenizer, model):
|
29 |
+
# """
|
30 |
+
# 给定一个文本,返回其对应的 IDs 和损失值。
|
31 |
+
# """
|
32 |
+
# # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
33 |
+
# # model = AutoModelForCausalLM.from_pretrained(model_name)
|
34 |
+
# # 这里只是简单地返回 IDs 和损失值,但是可以根据实际需求添加颜色或其他样式
|
35 |
+
# return [1, 2], [0.1, 0.7]
|
36 |
+
|
37 |
+
|
38 |
+
# def color_pipeline(text=["hi", "FreshEval"], model=None):
|
39 |
+
# """
|
40 |
+
# 给定一个文本,返回其对应的着色文本。
|
41 |
+
# """
|
42 |
+
# tokenizer=None
|
43 |
+
# ids, loss = get_ids_loss(text, tokenizer, model)
|
44 |
+
# text = get_text(ids, tokenizer)
|
45 |
+
# return color_text(text, loss)
|
46 |
+
|
47 |
+
# # 创建 Gradio 界面
|
48 |
+
# with gr.Blocks() as demo:
|
49 |
+
# with gr.Tab("color your text"):
|
50 |
+
# with gr.Row():
|
51 |
+
# text_input = gr.Textbox(label="input text", placeholder="input your text here...")
|
52 |
+
# # loss_input = gr.Number(label="loss")
|
53 |
+
# model_input = gr.Textbox(label="model name", placeholder="input your model name here...")
|
54 |
+
# color_text_output = gr.HTML(label="colored text")
|
55 |
+
# gr.Markdown("## Text Examples")
|
56 |
+
# # gr.Examples(
|
57 |
+
# # [["hi", "Adam"], [0.1,0.7]],
|
58 |
+
# # [text_input, loss_input],
|
59 |
+
# # cache_examples=True,
|
60 |
+
# # fn=color_text,
|
61 |
+
# # outputs=color_text_output
|
62 |
+
# # )
|
63 |
+
# color_text_button = gr.Button("color the text").click(color_pipeline, inputs=[text_input, model_input], outputs=color_text_output)
|
64 |
+
|
65 |
+
|
66 |
+
# date_time_input = gr.Textbox(label="the date when the text is generated")#TODO add date time input
|
67 |
+
# description_input = gr.Textbox(label="description of the text")
|
68 |
+
# submit_button = gr.Button("submit a post or record")
|
69 |
+
# #TODO add model and its score
|
70 |
+
|
71 |
+
|
72 |
+
# # with gr.Tab("ID 转文本展示"):
|
73 |
+
# # with gr.Row():
|
74 |
+
# # ids_input = gr.Textbox(label="输入 IDs (如 [101, 102, ...])")
|
75 |
+
# # tokenizer_input = gr.Textbox(label="Tokenizer 名称", value="bert-base-uncased")
|
76 |
+
# # show_text_output = gr.Textbox(label="转换后的文本")
|
77 |
+
# # show_text_button = gr.Button("转换并展示").click(show_text, inputs=[ids_input, tokenizer_input], outputs=show_text_output)
|
78 |
+
|
79 |
+
# with gr.Tab("model ppl with time"):
|
80 |
+
# '''
|
81 |
+
# see the matplotlib example, to see ppl with time, select the models
|
82 |
+
# '''
|
83 |
+
|
84 |
+
|
85 |
+
# with gr.Tab("model ppl with time"):
|
86 |
+
# '''
|
87 |
+
# see the matplotlib example, to see ppl with time, select the models
|
88 |
+
# '''
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
# demo.launch()
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
# import gradio as gr
|
97 |
+
# from transformers import pipeline
|
98 |
+
|
99 |
+
|
100 |
+
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
101 |
+
|
102 |
+
# def predict(input_img):
|
103 |
+
# predictions = pipeline(input_img)
|
104 |
+
# return input_img, {p["label"]: p["score"] for p in predictions}
|
105 |
+
|
106 |
+
# gradio_app = gr.Interface(
|
107 |
+
# predict,
|
108 |
+
# inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
109 |
+
# outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
110 |
+
# title="Hot Dog? Or Not?",
|
111 |
+
# )
|
112 |
+
|
113 |
+
# if __name__ == "__main__":
|
114 |
+
# gradio_app.launch()
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
import gradio as gr
|
119 |
+
|
120 |
+
def greet(name, intensity):
|
121 |
+
return "Hello, " + name + "!" * int(intensity)
|
122 |
+
|
123 |
+
demo = gr.Interface(
|
124 |
+
fn=greet,
|
125 |
+
inputs=["text", "slider"],
|
126 |
+
outputs=["text"],
|
127 |
+
)
|
128 |
+
|
129 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
lm-evaluation-harness
|
2 |
+
transformers
|
3 |
+
torch
|