jaekookang commited on
Commit
39a6dd6
β€’
1 Parent(s): af72b72
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .ipynb_checkpoints
2
+ *~
.ipynb_checkpoints/gradio_artist_classifier-checkpoint.py CHANGED
@@ -10,14 +10,62 @@ import matplotlib.pyplot as plt
10
  import matplotlib.image as mpimg
11
  import seaborn as sns
12
 
 
 
 
 
13
  import gradio as gr
14
  import tensorflow as tf
15
  tfk = tf.keras
16
 
17
  from gradcam_utils import get_img_4d_array, make_gradcam_heatmap, align_image_with_heatmap
18
 
19
- def greet(name):
20
- return "Hello " + name + "!!"
 
 
21
 
22
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
23
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  import matplotlib.image as mpimg
11
  import seaborn as sns
12
 
13
+ import json
14
+ import skimage.io
15
+ from loguru import logger
16
+ from huggingface_hub import from_pretrained_keras
17
  import gradio as gr
18
  import tensorflow as tf
19
  tfk = tf.keras
20
 
21
  from gradcam_utils import get_img_4d_array, make_gradcam_heatmap, align_image_with_heatmap
22
 
23
+ # ---------- Settings ----------
24
+ ARTIST_META = 'artist.json'
25
+ TREND_META = 'trend.json'
26
+ EXAMPLES = ['monet.jpg']
27
 
28
+ # ---------- Logging ----------
29
+ logger.add('app.log', mode='a')
30
+ logger.info('============================= App restarted =============================')
31
+
32
+ # ---------- Model ----------
33
+ logger.info('loading models...')
34
+ artist_model = from_pretrained_keras("jkang/drawing-artist-classifier")
35
+ trend_model = from_pretrained_keras("jkang/drawing-artistic-trend-classifier")
36
+ logger.info('both models loaded')
37
+
38
+ def load_image_as_array(image_file):
39
+ img = skimage.io.imread(image_file, as_gray=False, plugin='matplotlib')
40
+ if (img.shape[-1] > 3) & (remove_alpha_channel): # if RGBA
41
+ img = img[..., :-1]
42
+ return img
43
+
44
+ def load_image_as_tensor(image_file):
45
+ img = tf.io.read_file(image_file)
46
+ img = tf.io.decode_jpeg(img, channels=3)
47
+ return img
48
+
49
+ def predict(input_image):
50
+ img_3d_array = load_image_as_array(input_image)
51
+ img_4d_tensor = load_image_as_tensor(input_image)
52
+ logger.info(f'--- {input_image} loaded')
53
+
54
+ artist_model(img_4d_tensor);
55
+ trend_model(img_4d_tensor);
56
+
57
+ return img_3d_array
58
+
59
+ iface = gr.Interface(
60
+ predict,
61
+ title='Predict Artist and Artistic Trend of Drawings πŸŽ¨πŸ‘¨πŸ»β€πŸŽ¨ (prototype)',
62
+ description='Upload a drawing and the model will predict how likely it seems given 10 artists and their trend/style',
63
+ inputs=[
64
+ gr.inputs.Image(label='Upload a drawing/image', type='file')
65
+ ],
66
+ outputs=[
67
+ gr.outputs.Image(label='Prediction')
68
+ ],
69
+ examples=EXAMPLES,
70
+ )
71
+ iface.launch(debug=True, enable_queue=True)
.ipynb_checkpoints/requirements-checkpoint.txt CHANGED
@@ -1,5 +1,9 @@
1
  gradio==2.7.0
 
 
2
  matplotlib==3.5.1
3
  numpy==1.22.0
 
4
  seaborn==0.11.2
 
5
  tensorflow==2.7.0
 
1
  gradio==2.7.0
2
+ huggingface_hub==0.4.0
3
+ loguru==0.5.3
4
  matplotlib==3.5.1
5
  numpy==1.22.0
6
+ scikit_image==0.19.1
7
  seaborn==0.11.2
8
+ scikit-image==0.19.1
9
  tensorflow==2.7.0
artist.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "claude_monet": 0,
3
+ "henri_matisse": 1,
4
+ "jean_michel_basquiat": 2,
5
+ "keith_haring": 3,
6
+ "pablo_picasso": 4,
7
+ "pierre_augste_renoir": 5,
8
+ "rene_magritte": 6,
9
+ "roy_richtenstein": 7,
10
+ "vincent_van_gogh": 8,
11
+ "wassily_kandinsky": 9
12
+ }
gradio_artist_classifier.py CHANGED
@@ -10,14 +10,62 @@ import matplotlib.pyplot as plt
10
  import matplotlib.image as mpimg
11
  import seaborn as sns
12
 
 
 
 
 
13
  import gradio as gr
14
  import tensorflow as tf
15
  tfk = tf.keras
16
 
17
  from gradcam_utils import get_img_4d_array, make_gradcam_heatmap, align_image_with_heatmap
18
 
19
- def greet(name):
20
- return "Hello " + name + "!!"
 
 
21
 
22
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
23
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  import matplotlib.image as mpimg
11
  import seaborn as sns
12
 
13
+ import json
14
+ import skimage.io
15
+ from loguru import logger
16
+ from huggingface_hub import from_pretrained_keras
17
  import gradio as gr
18
  import tensorflow as tf
19
  tfk = tf.keras
20
 
21
  from gradcam_utils import get_img_4d_array, make_gradcam_heatmap, align_image_with_heatmap
22
 
23
+ # ---------- Settings ----------
24
+ ARTIST_META = 'artist.json'
25
+ TREND_META = 'trend.json'
26
+ EXAMPLES = ['monet.jpg']
27
 
28
+ # ---------- Logging ----------
29
+ logger.add('app.log', mode='a')
30
+ logger.info('============================= App restarted =============================')
31
+
32
+ # ---------- Model ----------
33
+ logger.info('loading models...')
34
+ artist_model = from_pretrained_keras("jkang/drawing-artist-classifier")
35
+ trend_model = from_pretrained_keras("jkang/drawing-artistic-trend-classifier")
36
+ logger.info('both models loaded')
37
+
38
+ def load_image_as_array(image_file):
39
+ img = skimage.io.imread(image_file, as_gray=False, plugin='matplotlib')
40
+ if (img.shape[-1] > 3) & (remove_alpha_channel): # if RGBA
41
+ img = img[..., :-1]
42
+ return img
43
+
44
+ def load_image_as_tensor(image_file):
45
+ img = tf.io.read_file(image_file)
46
+ img = tf.io.decode_jpeg(img, channels=3)
47
+ return img
48
+
49
+ def predict(input_image):
50
+ img_3d_array = load_image_as_array(input_image)
51
+ img_4d_tensor = load_image_as_tensor(input_image)
52
+ logger.info(f'--- {input_image} loaded')
53
+
54
+ artist_model(img_4d_tensor);
55
+ trend_model(img_4d_tensor);
56
+
57
+ return img_3d_array
58
+
59
+ iface = gr.Interface(
60
+ predict,
61
+ title='Predict Artist and Artistic Trend of Drawings πŸŽ¨πŸ‘¨πŸ»β€πŸŽ¨ (prototype)',
62
+ description='Upload a drawing and the model will predict how likely it seems given 10 artists and their trend/style',
63
+ inputs=[
64
+ gr.inputs.Image(label='Upload a drawing/image', type='file')
65
+ ],
66
+ outputs=[
67
+ gr.outputs.Image(label='Prediction')
68
+ ],
69
+ examples=EXAMPLES,
70
+ )
71
+ iface.launch(debug=True, enable_queue=True)
monet.jpg ADDED
requirements-dev.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ gradio==2.7.0
2
+ huggingface_hub==0.4.0
3
+ loguru==0.5.3
4
+ matplotlib==3.5.1
5
+ numpy==1.22.0
6
+ scikit_image==0.19.1
7
+ seaborn==0.11.2
8
+ scikit-image==0.19.1
9
+ tensorflow==2.7.0
requirements.txt CHANGED
@@ -1,5 +1,9 @@
1
  gradio==2.7.0
 
 
2
  matplotlib==3.5.1
3
  numpy==1.22.0
 
4
  seaborn==0.11.2
 
5
  tensorflow==2.7.0
 
1
  gradio==2.7.0
2
+ huggingface_hub==0.4.0
3
+ loguru==0.5.3
4
  matplotlib==3.5.1
5
  numpy==1.22.0
6
+ scikit_image==0.19.1
7
  seaborn==0.11.2
8
+ scikit-image==0.19.1
9
  tensorflow==2.7.0
trend.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cubism": 0,
3
+ "expressionism": 1,
4
+ "fauvisme": 2,
5
+ "graffitiart": 3,
6
+ "impressionism": 4,
7
+ "popart": 5,
8
+ "post_impressionism": 6,
9
+ "surrealism": 7
10
+ }