demo-image-completion / gradio_imagecompletion.py
jaekookang
update reference
ec64b87
raw
history blame
3.52 kB
'''Image Completion Demo (ImageGPT)
- Paper: https://arxiv.org/abs/2109.10282
- Code: https://huggingface.co/spaces/nielsr/imagegpt-completion
---
- 2021-12-10 first created
- examples changed
'''
from PIL import Image
import matplotlib.pyplot as plt
import os
import numpy as np
from glob import glob
import gradio as gr
from loguru import logger
import torch
from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalImageModeling
# ========== Settings ==========
EXAMPLE_DIR = 'examples'
examples = sorted(glob(os.path.join(EXAMPLE_DIR, '*.jpg')))
# ========== Logger ==========
logger.add('app.log', mode='a')
logger.info('===== APP RESTARTED =====')
# ========== Models ==========
# MODEL_DIR = 'models'
# os.environ['TORCH_HOME'] = MODEL_DIR
# os.environ['TF_HOME'] = MODEL_DIR
feature_extractor = ImageGPTFeatureExtractor.from_pretrained(
"openai/imagegpt-medium",
# cache_dir=MODEL_DIR
)
model = ImageGPTForCausalImageModeling.from_pretrained(
"openai/imagegpt-medium",
# cache_dir=MODEL_DIR
)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(DEVICE)
logger.info(f'model loaded (DEVICE:{DEVICE})')
def process_image(image):
logger.info('--- image file received')
# prepare 7 images, shape (7, 1024)
batch_size = 7
encoding = feature_extractor([image for _ in range(batch_size)], return_tensors="pt")
# create primers
samples = encoding.pixel_values.numpy()
n_px = feature_extractor.size
clusters = feature_extractor.clusters
n_px_crop = 16
primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens
# get conditioned image (from first primer tensor), padded with black pixels to be 32x32
primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8)
primers_img = np.pad(primers_img, pad_width=((0,16), (0,0), (0,0)), mode="constant")
# generate (no beam search)
context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1)
context = torch.tensor(context).to(DEVICE)
output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40)
# decode back to images (convert color cluster tokens back to pixels)
samples = output[:,1:].cpu().detach().numpy()
samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples]
samples_img = [primers_img] + samples_img
# stack images horizontally
row1 = np.hstack(samples_img[:4])
row2 = np.hstack(samples_img[4:])
result = np.vstack([row1, row2])
# return as PIL Image
completion = Image.fromarray(result)
logger.info('--- image generated')
return completion
iface = gr.Interface(
process_image,
title="์ด๋ฏธ์ง€์˜ ์ ˆ๋ฐ˜์„ ์ง€์šฐ๊ณ  ์ ˆ๋ฐ˜์„ ์ฑ„์›Œ ๋„ฃ์–ด์ฃผ๋Š” Image Completion ๋ฐ๋ชจ์ž…๋‹ˆ๋‹ค (ImageGPT)",
description='์ฃผ์–ด์ง„ ์ด๋ฏธ์ง€์˜ ์ ˆ๋ฐ˜ ์•„๋ž˜๋ฅผ AI๊ฐ€ ์ฑ„์›Œ ๋„ฃ์–ด์ค๋‹ˆ๋‹ค (CPU๋กœ ์•ฝ 100์ดˆ ์ •๋„ ์†Œ์š”๋ฉ๋‹ˆ๋‹ค)',
inputs=gr.inputs.Image(type="pil", label='์ธํ’‹ ์ด๋ฏธ์ง€'),
outputs=gr.outputs.Image(type="pil", label='AI๊ฐ€ ๊ทธ๋ฆฐ ๊ฒฐ๊ณผ'),
examples=examples,
enable_queue=True,
article='<p style="text-align:center">https://huggingface.co/spaces/nielsr/imagegpt-completion</p>',
)
if __name__ == '__main__':
iface.launch(debug=True)