Spaces:
Runtime error
Runtime error
File size: 8,936 Bytes
41333da 4f44610 57c1a5b 9b6dfb4 57c1a5b 986b7ad 57c1a5b 41333da 425dec3 41333da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from imstack.core import ImStack
from tqdm.notebook import tqdm
import kornia.augmentation as K
from CLIP import clip
from torchvision import transforms
from PIL import Image
import numpy as np
import math
from matplotlib import pyplot as plt
from fastprogress.fastprogress import master_bar, progress_bar
from IPython.display import HTML
from base64 import b64encode
import warnings
warnings.filterwarnings('ignore') # Some pytorch functions give warnings about behaviour changes that I don't want to see over and over again :)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
#Load CLOOB model
import sys
sys.path.append('./cloob-training')
sys.path.append('./clip')
# git isn't pulling the submodules for cloob-training so we need to add a path to clip
# I hate this :D
with open('./cloob-training/cloob_training/model_pt.py', 'r+') as f:
content = f.read()
f.seek(0, 0)
f.write("import sys\n" + "sys.path.append('../../../clip')\n" + '\n' + content.replace("import clip", "from CLIP import clip"))
from cloob_training import model_pt, pretrained
config = pretrained.get_config('cloob_laion_400m_vit_b_16_16_epochs')
cloob = model_pt.get_pt_model(config)
checkpoint = pretrained.download_checkpoint(config)
cloob.load_state_dict(model_pt.get_pt_params(config, checkpoint))
cloob.eval().requires_grad_(False).to(device)
print('done')
# Load fastai model
import gradio as gr
from fastai.vision.all import *
from os.path import exists
import requests
model_fn = 'quick_224px'
url = 'https://huggingface.co/johnowhitaker/sketchy_unet_rn34/resolve/main/quick_224px'
if not exists(model_fn):
print('starting download')
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(model_fn, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print('done')
else:
print('file exists')
def get_x(item):return None
def get_y(item):return None
sketch_model = load_learner(model_fn)
# Cutouts
cutn=16
cut_pow=1
make_cutouts = MakeCutouts(cloob.config['image_encoder']['image_size'], cutn, cut_pow)
def process_im(image_path,
sketchify_first=True,
prompt='A watercolor painting of a face',
lr=0.03,
n_iter=10
):
n_iter = int(n_iter)
pil_im = None
if sketchify_first:
pred = sketch_model.predict(image_path)
np_im = pred[0].permute(1, 2, 0).numpy()
pil_im = Image.fromarray(np_im.astype(np.uint8))
else:
pil_im = Image.open(image_path).resize((540, 540))
prompt_texts = [prompt]
weight_decay=1e-4
out_size=540
base_size=8
n_layers=5
scale=3
layer_decay = 0.3
# The prompts
p_prompts = []
for pr in prompt_texts:
embed = cloob.text_encoder(cloob.tokenize(pr).to(device)).float()
p_prompts.append(Prompt(embed, 1, float('-inf')).to(device)) # 1 is the weight
# Some negative prompts
n_prompts = []
for pr in ["Random noise", 'saturated rainbow RGB deep dream']:
embed = cloob.text_encoder(cloob.tokenize(pr).to(device)).float()
n_prompts.append(Prompt(embed, 0.5, float('-inf')).to(device)) # 0.5 is the weight
# The ImageStack - trying a different scale and n_layers
ims = ImStack(base_size=base_size,
scale=scale,
n_layers=n_layers,
out_size=out_size,
decay=layer_decay,
init_image = pil_im)
# desaturate starting image
desat = 0.6#@param
if desat != 1:
for i in range(n_layers):
ims.layers[i] = ims.layers[i].detach()*desat
ims.layers[i].requires_grad = True
optimizer = optim.Adam(ims.layers, lr=lr, weight_decay=weight_decay)
losses = []
for i in tqdm(range(n_iter)):
optimizer.zero_grad()
im = ims()
batch = cloob.normalize(make_cutouts(im))
iii = cloob.image_encoder(batch).float()
l = 0
for prompt in p_prompts:
l += prompt(iii)
for prompt in n_prompts:
l -= prompt(iii)
losses.append(float(l.detach().cpu()))
l.backward() # Backprop
optimizer.step() # Update
return ims.to_pil()
from gradio.inputs import Checkbox
iface = gr.Interface(fn=process_im,
inputs=[
gr.inputs.Image(label="Input Image", shape=(512, 512), type="filepath"),
gr.inputs.Checkbox(label='Sketchify First', default=True),
gr.inputs.Textbox(default="A charcoal and watercolor sketch of a person", label="Prompt"),
gr.inputs.Number(default=0.03, label='LR'),
gr.inputs.Number(default=10, label='num_steps'),
],
outputs=[gr.outputs.Image(type="pil", label="Model Output")],
title = 'Sketchy ImStack + CLOOB', description = "Stylize an image with ImStack+CLOOB after a Sketchy Unet",
article = "An input image is sketchified with a unet - see https://huggingface.co/spaces/johnowhitaker/sketchy_unet_demo and links from there to training and blog post. It is then loaded into an imstack (https://johnowhitaker.github.io/imstack/) which is optimized towards a CLOOB prompt for n_steps. Feel free to reach me @johnowhitaker with questions :)"
)
iface.launch(enable_queue=True) |