import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim from imstack.core import ImStack from tqdm.notebook import tqdm import kornia.augmentation as K from CLIP import clip from torchvision import transforms from PIL import Image import numpy as np import math from matplotlib import pyplot as plt from fastprogress.fastprogress import master_bar, progress_bar from IPython.display import HTML from base64 import b64encode import warnings warnings.filterwarnings('ignore') # Some pytorch functions give warnings about behaviour changes that I don't want to see over and over again :) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') def sinc(x): return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])) def lanczos(x, a): cond = torch.logical_and(-a < x, x < a) out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([])) return out / out.sum() def ramp(ratio, width): n = math.ceil(width / ratio + 1) out = torch.empty([n]) cur = 0 for i in range(out.shape[0]): out[i] = cur cur += ratio return torch.cat([-out[1:].flip([0]), out])[1:-1] class Prompt(nn.Module): def __init__(self, embed, weight=1., stop=float('-inf')): super().__init__() self.register_buffer('embed', embed) self.register_buffer('weight', torch.as_tensor(weight)) self.register_buffer('stop', torch.as_tensor(stop)) def forward(self, input): input_normed = F.normalize(input.unsqueeze(1), dim=2) embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2) dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2) dists = dists * self.weight.sign() return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean() class MakeCutouts(nn.Module): def __init__(self, cut_size, cutn, cut_pow=1.): super().__init__() self.cut_size = cut_size self.cutn = cutn self.cut_pow = cut_pow self.augs = nn.Sequential( K.RandomHorizontalFlip(p=0.5), K.RandomSharpness(0.3,p=0.4), K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'), K.RandomPerspective(0.2,p=0.4), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7)) self.noise_fac = 0.1 def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] for _ in range(self.cutn): size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) batch = self.augs(torch.cat(cutouts, dim=0)) if self.noise_fac: facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac) batch = batch + facs * torch.randn_like(batch) return batch def resample(input, size, align_corners=True): n, c, h, w = input.shape dh, dw = size input = input.view([n * c, 1, h, w]) if dh < h: kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype) pad_h = (kernel_h.shape[0] - 1) // 2 input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect') input = F.conv2d(input, kernel_h[None, None, :, None]) if dw < w: kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype) pad_w = (kernel_w.shape[0] - 1) // 2 input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect') input = F.conv2d(input, kernel_w[None, None, None, :]) input = input.view([n, c, h, w]) return F.interpolate(input, size, mode='bicubic', align_corners=align_corners) class ReplaceGrad(torch.autograd.Function): @staticmethod def forward(ctx, x_forward, x_backward): ctx.shape = x_backward.shape return x_forward @staticmethod def backward(ctx, grad_in): return None, grad_in.sum_to_size(ctx.shape) replace_grad = ReplaceGrad.apply #Load CLOOB model import sys sys.path.append('./cloob-training') sys.path.append('./clip') # git isn't pulling the submodules for cloob-training so we need to add a path to clip # I hate this :D with open('./cloob-training/cloob_training/model_pt.py', 'r+') as f: content = f.read() f.seek(0, 0) f.write("import sys\n" + "sys.path.append('../../../clip')\n" + '\n' + content.replace("import clip", "from CLIP import clip")) from cloob_training import model_pt, pretrained config = pretrained.get_config('cloob_laion_400m_vit_b_16_16_epochs') cloob = model_pt.get_pt_model(config) checkpoint = pretrained.download_checkpoint(config) cloob.load_state_dict(model_pt.get_pt_params(config, checkpoint)) cloob.eval().requires_grad_(False).to(device) print('done') # Load fastai model import gradio as gr from fastai.vision.all import * from os.path import exists import requests model_fn = 'quick_224px' url = 'https://huggingface.co/johnowhitaker/sketchy_unet_rn34/resolve/main/quick_224px' if not exists(model_fn): print('starting download') with requests.get(url, stream=True) as r: r.raise_for_status() with open(model_fn, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) print('done') else: print('file exists') def get_x(item):return None def get_y(item):return None sketch_model = load_learner(model_fn) # Cutouts cutn=16 cut_pow=1 make_cutouts = MakeCutouts(cloob.config['image_encoder']['image_size'], cutn, cut_pow) def process_im(image_path, sketchify_first=True, prompt='A watercolor painting of a face', lr=0.03, n_iter=10 ): n_iter = int(n_iter) pil_im = None if sketchify_first: pred = sketch_model.predict(image_path) np_im = pred[0].permute(1, 2, 0).numpy() pil_im = Image.fromarray(np_im.astype(np.uint8)) else: pil_im = Image.open(image_path).resize((540, 540)) prompt_texts = [prompt] weight_decay=1e-4 out_size=540 base_size=8 n_layers=5 scale=3 layer_decay = 0.3 # The prompts p_prompts = [] for pr in prompt_texts: embed = cloob.text_encoder(cloob.tokenize(pr).to(device)).float() p_prompts.append(Prompt(embed, 1, float('-inf')).to(device)) # 1 is the weight # Some negative prompts n_prompts = [] for pr in ["Random noise", 'saturated rainbow RGB deep dream']: embed = cloob.text_encoder(cloob.tokenize(pr).to(device)).float() n_prompts.append(Prompt(embed, 0.5, float('-inf')).to(device)) # 0.5 is the weight # The ImageStack - trying a different scale and n_layers ims = ImStack(base_size=base_size, scale=scale, n_layers=n_layers, out_size=out_size, decay=layer_decay, init_image = pil_im) # desaturate starting image desat = 0.6#@param if desat != 1: for i in range(n_layers): ims.layers[i] = ims.layers[i].detach()*desat ims.layers[i].requires_grad = True optimizer = optim.Adam(ims.layers, lr=lr, weight_decay=weight_decay) losses = [] for i in tqdm(range(n_iter)): optimizer.zero_grad() im = ims() batch = cloob.normalize(make_cutouts(im)) iii = cloob.image_encoder(batch).float() l = 0 for prompt in p_prompts: l += prompt(iii) for prompt in n_prompts: l -= prompt(iii) losses.append(float(l.detach().cpu())) l.backward() # Backprop optimizer.step() # Update return ims.to_pil() from gradio.inputs import Checkbox iface = gr.Interface(fn=process_im, inputs=[ gr.inputs.Image(label="Input Image", shape=(512, 512), type="filepath"), gr.inputs.Checkbox(label='Sketchify First', default=True), gr.inputs.Textbox(default="A charcoal and watercolor sketch of a person", label="Prompt"), gr.inputs.Number(default=0.03, label='LR'), gr.inputs.Number(default=10, label='num_steps'), ], outputs=[gr.outputs.Image(type="pil", label="Model Output")], title = 'Sketchy ImStack + CLOOB', description = "Stylize an image with ImStack+CLOOB after a Sketchy Unet", article = "An input image is sketchified with a unet - see https://huggingface.co/spaces/johnowhitaker/sketchy_unet_demo and links from there to training and blog post. It is then loaded into an imstack (https://johnowhitaker.github.io/imstack/) which is optimized towards a CLOOB prompt for n_steps. Feel free to reach me @johnowhitaker with questions :)" ) iface.launch(enable_queue=True)