Spaces:
Runtime error
Runtime error
johnsu6616
commited on
Commit
•
856e316
1
Parent(s):
a384160
- app.py +147 -81
- requirements.txt +3 -3
app.py
CHANGED
@@ -5,8 +5,8 @@ import gradio as gr
|
|
5 |
import torch
|
6 |
|
7 |
from transformers import AutoModelForCausalLM
|
8 |
-
from transformers import AutoTokenizer
|
9 |
from transformers import AutoModelForSeq2SeqLM
|
|
|
10 |
|
11 |
from transformers import AutoProcessor
|
12 |
|
@@ -14,12 +14,16 @@ from transformers import pipeline
|
|
14 |
|
15 |
from transformers import set_seed
|
16 |
|
|
|
|
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
20 |
big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
21 |
|
22 |
-
|
|
|
|
|
23 |
|
24 |
zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval()
|
25 |
zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')
|
@@ -27,17 +31,14 @@ zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')
|
|
27 |
en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval()
|
28 |
en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
|
29 |
|
30 |
-
|
31 |
def translate_zh2en(text):
|
32 |
with torch.no_grad():
|
33 |
|
|
|
34 |
text = re.sub(r'([^\u4e00-\u9fa5])([\u4e00-\u9fa5])', r'\1\n\2', text)
|
35 |
text = re.sub(r'([\u4e00-\u9fa5])([^\u4e00-\u9fa5])', r'\1\n\2', text)
|
36 |
-
|
37 |
text = text.replace('\n', ',')
|
38 |
-
|
39 |
text =re.sub(r'(?<![a-zA-Z])\s+|\s+(?![a-zA-Z])', '', text)
|
40 |
-
|
41 |
text = re.sub(r',+', ',', text)
|
42 |
|
43 |
encoded = zh2en_tokenizer([text], return_tensors='pt')
|
@@ -45,80 +46,68 @@ def translate_zh2en(text):
|
|
45 |
result = zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
|
46 |
|
47 |
result = result.strip()
|
48 |
-
|
|
|
49 |
result = text
|
50 |
-
return result
|
51 |
|
|
|
52 |
|
53 |
def translate_en2zh(text):
|
54 |
with torch.no_grad():
|
55 |
|
56 |
encoded = en2zh_tokenizer([text], return_tensors="pt")
|
57 |
sequences = en2zh_model.generate(**encoded)
|
58 |
-
|
59 |
-
|
60 |
-
def test05(text):
|
61 |
-
|
62 |
-
return text
|
63 |
|
64 |
-
|
|
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
68 |
|
69 |
-
def
|
70 |
seed = random.randint(100, 1000000)
|
71 |
set_seed(seed)
|
72 |
-
|
73 |
text_in_english = translate_zh2en(text)
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
for sequence in sequences:
|
79 |
-
|
80 |
-
|
81 |
-
line = sequence['generated_text'].strip()
|
82 |
-
|
83 |
-
if line != text_in_english and len(line) > (len(text_in_english) + 4):
|
84 |
|
85 |
-
|
86 |
-
list.append(line+"\n")
|
87 |
-
list.append("\n")
|
88 |
|
89 |
-
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
if result != '':
|
96 |
-
break
|
97 |
-
return result
|
98 |
|
|
|
|
|
99 |
|
100 |
-
def
|
101 |
-
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
102 |
-
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
103 |
-
tokenizer.pad_token = tokenizer.eos_token
|
104 |
-
tokenizer.padding_side = "left"
|
105 |
-
return prompter_model, tokenizer
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
text = translate_zh2en(text)
|
111 |
|
112 |
-
|
113 |
-
eos_id = prompter_tokenizer.eos_token_id
|
114 |
outputs = prompter_model.generate(
|
115 |
input_ids,
|
116 |
do_sample=False,
|
117 |
-
max_new_tokens=
|
118 |
num_beams=3,
|
119 |
num_return_sequences=3,
|
120 |
-
eos_token_id=eos_id,
|
121 |
pad_token_id=eos_id,
|
|
|
122 |
length_penalty=-1.0
|
123 |
)
|
124 |
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
@@ -134,69 +123,143 @@ def generate_prompter(text):
|
|
134 |
result.append("\n")
|
135 |
return "".join(result)
|
136 |
|
137 |
-
def combine_text(text):
|
138 |
-
text01 = generate_prompter(text)
|
139 |
-
text02 = text_generate(text)
|
140 |
-
return text01,text02
|
141 |
|
142 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
image = input_image.convert('RGB')
|
144 |
pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values
|
145 |
-
generated_ids = big_model.to(device).generate(pixel_values=pixel_values,
|
146 |
generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
with gr.Blocks() as block:
|
152 |
with gr.Column():
|
153 |
with gr.Tab('工作區'):
|
154 |
with gr.Row():
|
155 |
input_text = gr.Textbox(lines=12, label='輸入文字', placeholder='在此输入文字...')
|
156 |
-
input_image = gr.Image(type='pil')
|
157 |
with gr.Row():
|
158 |
txt_prompter_btn = gr.Button('文生文')
|
159 |
pic_prompter_btn = gr.Button('圖生文')
|
160 |
with gr.Row():
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
with gr.Row():
|
163 |
-
Textbox_2 = gr.Textbox(lines=6, label='
|
|
|
164 |
with gr.Tab('測試區'):
|
165 |
with gr.Row():
|
166 |
input_test01 = gr.Textbox(lines=2, label='中英翻譯', placeholder='在此输入文字...')
|
167 |
test01_btn = gr.Button('執行')
|
168 |
Textbox_test01 = gr.Textbox(lines=2, label='輸出結果')
|
169 |
with gr.Row():
|
170 |
-
input_test02 = gr.Textbox(lines=2, label='英中翻譯', placeholder='在此输入文字...')
|
171 |
test02_btn = gr.Button('執行')
|
172 |
Textbox_test02 = gr.Textbox(lines=2, label='輸出結果')
|
173 |
with gr.Row():
|
174 |
-
input_test03 = gr.Textbox(lines=2, label='
|
175 |
test03_btn = gr.Button('執行')
|
176 |
Textbox_test03 = gr.Textbox(lines=2, label='輸出結果')
|
177 |
with gr.Row():
|
178 |
-
input_test04 = gr.Textbox(lines=2, label='
|
179 |
test04_btn = gr.Button('執行')
|
180 |
Textbox_test04 = gr.Textbox(lines=2, label='輸出結果')
|
181 |
with gr.Row():
|
182 |
-
input_test05 = gr.Textbox(lines=2, label='
|
183 |
test05_btn = gr.Button('執行')
|
184 |
Textbox_test05 = gr.Textbox(lines=2, label='輸出結果')
|
185 |
with gr.Row():
|
186 |
-
input_test06 = gr.Textbox(lines=2, label='
|
187 |
test06_btn = gr.Button('執行')
|
188 |
Textbox_test06 = gr.Textbox(lines=2, label='輸出結果')
|
189 |
|
190 |
-
txt_prompter_btn.click(
|
191 |
-
fn=
|
192 |
-
inputs=input_text,
|
193 |
outputs=[Textbox_1,Textbox_2]
|
194 |
-
|
195 |
-
|
196 |
pic_prompter_btn.click(
|
197 |
fn=get_prompt_from_image,
|
198 |
-
inputs=input_image,
|
199 |
-
outputs=
|
200 |
)
|
201 |
|
202 |
test01_btn.click(
|
@@ -212,25 +275,28 @@ with gr.Blocks() as block:
|
|
212 |
)
|
213 |
|
214 |
test03_btn.click(
|
215 |
-
fn=
|
216 |
inputs=input_test03,
|
217 |
outputs=Textbox_test03
|
218 |
)
|
219 |
|
220 |
test04_btn.click(
|
221 |
-
fn=
|
222 |
inputs=input_test04,
|
223 |
outputs=Textbox_test04
|
224 |
)
|
|
|
225 |
test05_btn.click(
|
226 |
-
fn=
|
227 |
inputs=input_test05,
|
228 |
outputs=Textbox_test05
|
229 |
)
|
|
|
230 |
test06_btn.click(
|
231 |
-
fn=
|
232 |
-
inputs=input_test06,
|
233 |
-
outputs=Textbox_test06
|
234 |
)
|
235 |
|
236 |
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
|
|
|
|
5 |
import torch
|
6 |
|
7 |
from transformers import AutoModelForCausalLM
|
|
|
8 |
from transformers import AutoModelForSeq2SeqLM
|
9 |
+
from transformers import AutoTokenizer
|
10 |
|
11 |
from transformers import AutoProcessor
|
12 |
|
|
|
14 |
|
15 |
from transformers import set_seed
|
16 |
|
17 |
+
global ButtonIndex
|
18 |
+
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
22 |
big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
23 |
|
24 |
+
pipeline_01 = pipeline('text-generation', model='succinctly/text2image-prompt-generator')
|
25 |
+
pipeline_02 = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2')
|
26 |
+
pipeline_03 = pipeline('text-generation', model='johnsu6616/ModelExport')
|
27 |
|
28 |
zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval()
|
29 |
zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')
|
|
|
31 |
en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval()
|
32 |
en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
|
33 |
|
|
|
34 |
def translate_zh2en(text):
|
35 |
with torch.no_grad():
|
36 |
|
37 |
+
text = re.sub(r"[:\-–.!;?_#]", '', text)
|
38 |
text = re.sub(r'([^\u4e00-\u9fa5])([\u4e00-\u9fa5])', r'\1\n\2', text)
|
39 |
text = re.sub(r'([\u4e00-\u9fa5])([^\u4e00-\u9fa5])', r'\1\n\2', text)
|
|
|
40 |
text = text.replace('\n', ',')
|
|
|
41 |
text =re.sub(r'(?<![a-zA-Z])\s+|\s+(?![a-zA-Z])', '', text)
|
|
|
42 |
text = re.sub(r',+', ',', text)
|
43 |
|
44 |
encoded = zh2en_tokenizer([text], return_tensors='pt')
|
|
|
46 |
result = zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
|
47 |
|
48 |
result = result.strip()
|
49 |
+
|
50 |
+
if result == "No,no," :
|
51 |
result = text
|
|
|
52 |
|
53 |
+
return result
|
54 |
|
55 |
def translate_en2zh(text):
|
56 |
with torch.no_grad():
|
57 |
|
58 |
encoded = en2zh_tokenizer([text], return_tensors="pt")
|
59 |
sequences = en2zh_model.generate(**encoded)
|
60 |
+
result = en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
result = re.sub(r'(\b\w+\b)(?:\W+\1\b)+', r'\1', result)
|
63 |
+
return result
|
64 |
|
65 |
+
def load_prompter():
|
66 |
+
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
68 |
+
tokenizer.pad_token = tokenizer.eos_token
|
69 |
+
tokenizer.padding_side = "left"
|
70 |
+
return prompter_model, tokenizer
|
71 |
|
72 |
+
prompter_model, prompter_tokenizer = load_prompter()
|
73 |
|
74 |
+
def generate_prompter_pipeline_01(text):
|
75 |
seed = random.randint(100, 1000000)
|
76 |
set_seed(seed)
|
|
|
77 |
text_in_english = translate_zh2en(text)
|
78 |
+
response = pipeline_01(text_in_english, max_new_tokens=80, num_return_sequences=3)
|
79 |
+
response_list = []
|
80 |
+
for x in response:
|
81 |
+
resp = x['generated_text'].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
if resp != text_in_english and len(resp) > (len(text_in_english) + 4):
|
|
|
|
|
84 |
|
85 |
+
response_list.append(translate_en2zh(resp)+"\n")
|
86 |
+
response_list.append(resp+"\n")
|
87 |
+
response_list.append("\n")
|
88 |
|
89 |
+
result = "".join(response_list)
|
90 |
+
result = re.sub('[^ ]+\.[^ ]+', '', result)
|
91 |
+
result = result.replace('<', '').replace('>', '')
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
if result != '':
|
94 |
+
return result
|
95 |
|
96 |
+
def generate_prompter_tokenizer_01(text):
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
text_in_english = translate_zh2en(text)
|
99 |
|
100 |
+
input_ids = prompter_tokenizer(text_in_english.strip()+" Rephrase:", return_tensors="pt").input_ids
|
|
|
101 |
|
102 |
+
eos_id = 50256
|
|
|
103 |
outputs = prompter_model.generate(
|
104 |
input_ids,
|
105 |
do_sample=False,
|
106 |
+
max_new_tokens=80,
|
107 |
num_beams=3,
|
108 |
num_return_sequences=3,
|
|
|
109 |
pad_token_id=eos_id,
|
110 |
+
eos_token_id=eos_id,
|
111 |
length_penalty=-1.0
|
112 |
)
|
113 |
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
|
123 |
result.append("\n")
|
124 |
return "".join(result)
|
125 |
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
def generate_prompter_pipeline_02(text):
|
128 |
+
seed = random.randint(100, 1000000)
|
129 |
+
set_seed(seed)
|
130 |
+
text_in_english = translate_zh2en(text)
|
131 |
+
response = pipeline_02(text_in_english, max_new_tokens=80, num_return_sequences=3)
|
132 |
+
response_list = []
|
133 |
+
for x in response:
|
134 |
+
resp = x['generated_text'].strip()
|
135 |
+
if resp != text_in_english and len(resp) > (len(text_in_english) + 4):
|
136 |
+
|
137 |
+
response_list.append(translate_en2zh(resp)+"\n")
|
138 |
+
response_list.append(resp+"\n")
|
139 |
+
response_list.append("\n")
|
140 |
+
|
141 |
+
result = "".join(response_list)
|
142 |
+
result = re.sub('[^ ]+\.[^ ]+','', result)
|
143 |
+
result = result.replace("<", "").replace(">", "")
|
144 |
+
|
145 |
+
if result != "":
|
146 |
+
return result
|
147 |
+
|
148 |
+
def generate_prompter_pipeline_03(text):
|
149 |
+
seed = random.randint(100, 1000000)
|
150 |
+
set_seed(seed)
|
151 |
+
text_in_english = translate_zh2en(text)
|
152 |
+
response = pipeline_03(text_in_english, max_new_tokens=80, num_return_sequences=3)
|
153 |
+
response_list = []
|
154 |
+
for x in response:
|
155 |
+
resp = x['generated_text'].strip()
|
156 |
+
if resp != text_in_english and len(resp) > (len(text_in_english) + 4):
|
157 |
+
|
158 |
+
|
159 |
+
response_list.append(translate_en2zh(resp)+"\n")
|
160 |
+
response_list.append(resp+"\n")
|
161 |
+
response_list.append("\n")
|
162 |
+
|
163 |
+
result = "".join(response_list)
|
164 |
+
result = re.sub('[^ ]+\.[^ ]+','', result)
|
165 |
+
result = result.replace("<", "").replace(">", "")
|
166 |
+
|
167 |
+
if result != "":
|
168 |
+
return result
|
169 |
+
|
170 |
+
def generate_render(text,choice):
|
171 |
+
if choice == '★pipeline模式(succinctly)':
|
172 |
+
outputs = generate_prompter_pipeline_01(text)
|
173 |
+
return outputs,choice
|
174 |
+
elif choice == '★★tokenizer模式':
|
175 |
+
outputs = generate_prompter_tokenizer_01(text)
|
176 |
+
return outputs,choice
|
177 |
+
elif choice == '★★★pipeline模型(Gustavosta)':
|
178 |
+
outputs = generate_prompter_pipeline_02(text)
|
179 |
+
return outputs,choice
|
180 |
+
elif choice == 'pipeline模型(John)_自訓測試,資料不穩定':
|
181 |
+
outputs = generate_prompter_pipeline_03(text)
|
182 |
+
return outputs,choice
|
183 |
+
|
184 |
+
def get_prompt_from_image(input_image,choice):
|
185 |
image = input_image.convert('RGB')
|
186 |
pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values
|
187 |
+
generated_ids = big_model.to(device).generate(pixel_values=pixel_values, max_new_tokens=80)
|
188 |
generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
189 |
+
text = re.sub(r"[:\-–.!;?_#]", '', generated_caption)
|
190 |
+
|
191 |
+
if choice == '★pipeline模式(succinctly)':
|
192 |
+
outputs = generate_prompter_pipeline_01(text)
|
193 |
+
return outputs
|
194 |
+
elif choice == '★★tokenizer模式':
|
195 |
+
outputs = generate_prompter_tokenizer_01(text)
|
196 |
+
return outputs
|
197 |
+
elif choice == '★★★pipeline模型(Gustavosta)':
|
198 |
+
outputs = generate_prompter_pipeline_02(text)
|
199 |
+
return outputs
|
200 |
+
elif choice == 'pipeline模型(John)_自訓測試,資料不穩定':
|
201 |
+
outputs = generate_prompter_pipeline_03(text)
|
202 |
+
return outputs
|
203 |
|
204 |
with gr.Blocks() as block:
|
205 |
with gr.Column():
|
206 |
with gr.Tab('工作區'):
|
207 |
with gr.Row():
|
208 |
input_text = gr.Textbox(lines=12, label='輸入文字', placeholder='在此输入文字...')
|
209 |
+
input_image = gr.Image(type='pil', label="選擇圖片(辨識度不佳)")
|
210 |
with gr.Row():
|
211 |
txt_prompter_btn = gr.Button('文生文')
|
212 |
pic_prompter_btn = gr.Button('圖生文')
|
213 |
with gr.Row():
|
214 |
+
radio_btn = gr.Radio(
|
215 |
+
label="請選擇產出方式",
|
216 |
+
choices=['★pipeline模式(succinctly)', '★★tokenizer模式', '★★★pipeline模型(Gustavosta)',
|
217 |
+
'pipeline模型(John)_自訓測試,資料不穩定'],
|
218 |
+
|
219 |
+
value='★pipeline模式(succinctly)'
|
220 |
+
)
|
221 |
+
|
222 |
+
with gr.Row():
|
223 |
+
Textbox_1 = gr.Textbox(lines=6, label='提示詞生成')
|
224 |
with gr.Row():
|
225 |
+
Textbox_2 = gr.Textbox(lines=6, label='測試資訊')
|
226 |
+
|
227 |
with gr.Tab('測試區'):
|
228 |
with gr.Row():
|
229 |
input_test01 = gr.Textbox(lines=2, label='中英翻譯', placeholder='在此输入文字...')
|
230 |
test01_btn = gr.Button('執行')
|
231 |
Textbox_test01 = gr.Textbox(lines=2, label='輸出結果')
|
232 |
with gr.Row():
|
233 |
+
input_test02 = gr.Textbox(lines=2, label='英中翻譯(不精準)', placeholder='在此输入文字...')
|
234 |
test02_btn = gr.Button('執行')
|
235 |
Textbox_test02 = gr.Textbox(lines=2, label='輸出結果')
|
236 |
with gr.Row():
|
237 |
+
input_test03 = gr.Textbox(lines=2, label='★pipeline模式(succinctly)', placeholder='在此输入文字...')
|
238 |
test03_btn = gr.Button('執行')
|
239 |
Textbox_test03 = gr.Textbox(lines=2, label='輸出結果')
|
240 |
with gr.Row():
|
241 |
+
input_test04 = gr.Textbox(lines=2, label='★★tokenizer模式', placeholder='在此输入文字...')
|
242 |
test04_btn = gr.Button('執行')
|
243 |
Textbox_test04 = gr.Textbox(lines=2, label='輸出結果')
|
244 |
with gr.Row():
|
245 |
+
input_test05 = gr.Textbox(lines=2, label='★★★pipeline模型(Gustavosta)', placeholder='在此输入文字...')
|
246 |
test05_btn = gr.Button('執行')
|
247 |
Textbox_test05 = gr.Textbox(lines=2, label='輸出結果')
|
248 |
with gr.Row():
|
249 |
+
input_test06 = gr.Textbox(lines=2, label='pipeline模型(John)_自訓測試,資料不穩定', placeholder='在此输入文字...')
|
250 |
test06_btn = gr.Button('執行')
|
251 |
Textbox_test06 = gr.Textbox(lines=2, label='輸出結果')
|
252 |
|
253 |
+
txt_prompter_btn.click (
|
254 |
+
fn=generate_render,
|
255 |
+
inputs=[input_text,radio_btn],
|
256 |
outputs=[Textbox_1,Textbox_2]
|
257 |
+
)
|
258 |
+
|
259 |
pic_prompter_btn.click(
|
260 |
fn=get_prompt_from_image,
|
261 |
+
inputs=[input_image,radio_btn],
|
262 |
+
outputs=Textbox_1
|
263 |
)
|
264 |
|
265 |
test01_btn.click(
|
|
|
275 |
)
|
276 |
|
277 |
test03_btn.click(
|
278 |
+
fn= generate_prompter_pipeline_01,
|
279 |
inputs=input_test03,
|
280 |
outputs=Textbox_test03
|
281 |
)
|
282 |
|
283 |
test04_btn.click(
|
284 |
+
fn= generate_prompter_tokenizer_01,
|
285 |
inputs=input_test04,
|
286 |
outputs=Textbox_test04
|
287 |
)
|
288 |
+
|
289 |
test05_btn.click(
|
290 |
+
fn= generate_prompter_pipeline_02,
|
291 |
inputs=input_test05,
|
292 |
outputs=Textbox_test05
|
293 |
)
|
294 |
+
|
295 |
test06_btn.click(
|
296 |
+
fn= generate_prompter_pipeline_03,
|
297 |
+
inputs= input_test06,
|
298 |
+
outputs= Textbox_test06
|
299 |
)
|
300 |
|
301 |
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
|
302 |
+
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
transformers==4.29.
|
2 |
torch==2.0.0
|
3 |
-
pytorch_lightning==
|
4 |
gradio==3.30.0
|
5 |
-
sentencepiece==0.1.
|
6 |
sacremoses==0.0.53
|
|
|
1 |
+
transformers==4.29.2
|
2 |
torch==2.0.0
|
3 |
+
pytorch_lightning==2.0.2
|
4 |
gradio==3.30.0
|
5 |
+
sentencepiece==0.1.99
|
6 |
sacremoses==0.0.53
|