File size: 25,600 Bytes
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f1721
fae2f45
 
 
 
 
 
 
 
 
 
 
c161754
 
fae2f45
c161754
 
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c161754
 
 
 
 
 
 
 
 
 
 
 
 
78a19b7
c161754
 
fae2f45
 
 
 
 
 
 
 
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae2f45
 
 
 
 
 
c161754
45daab4
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fccdcf
c161754
 
 
 
 
 
 
 
45daab4
fae2f45
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae2f45
c161754
fae2f45
 
 
c161754
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c161754
 
 
 
 
033619b
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c161754
fae2f45
c161754
fae2f45
 
 
 
 
 
 
033619b
fae2f45
 
c161754
fae2f45
 
 
 
 
 
 
 
 
 
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c161754
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c161754
 
fae2f45
 
 
2d27e8d
 
fae2f45
2d27e8d
fae2f45
 
 
 
 
 
 
c161754
 
 
 
 
 
 
fae2f45
 
 
 
 
 
2d27e8d
 
fae2f45
c161754
fae2f45
 
 
 
 
 
c161754
 
fae2f45
033619b
 
 
 
 
 
 
fae2f45
 
c161754
fae2f45
 
c161754
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c161754
fae2f45
 
 
033619b
c161754
033619b
 
fae2f45
 
c161754
fae2f45
 
 
 
 
 
 
c161754
fae2f45
 
 
c161754
fae2f45
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45daab4
fae2f45
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae2f45
 
c161754
 
 
 
 
 
 
fae2f45
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae2f45
 
 
c161754
 
 
 
 
 
 
fae2f45
 
c161754
 
 
 
 
 
 
fae2f45
c161754
 
 
 
 
 
fae2f45
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae2f45
c161754
 
 
 
 
 
fae2f45
 
 
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
033619b
c161754
 
 
033619b
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c161754
fae2f45
 
 
 
 
 
 
c161754
fae2f45
 
 
c161754
 
 
033619b
c161754
 
 
fae2f45
 
c161754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae2f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c161754
fae2f45
 
 
 
 
 
c161754
 
 
 
 
66c976a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
import os
import gradio as gr
import argparse
import numpy as np
import torch
import einops
import copy
import math
import time
import random
import spaces
import re
import uuid

from gradio_imageslider import ImageSlider
from PIL import Image
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
from huggingface_hub import hf_hub_download
from pillow_heif import register_heif_opener

register_heif_opener()

max_64_bit_int = np.iinfo(np.int32).max

hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")

parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=True)
parser.add_argument("--use_image_slider", action='store_true', default=False)
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=False)
parser.add_argument("--use_tile_vae", action='store_true', default=True)
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
args = parser.parse_args()

if torch.cuda.device_count() > 0:
    SUPIR_device = 'cuda:0'

    # Load SUPIR
    model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
    if args.loading_half_params:
        model = model.half()
    if args.use_tile_vae:
        model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
    model = model.to(SUPIR_device)
    model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
    model.current_model = 'v0-Q'
    ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)

def check_upload(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to restore.")
    return gr.update(visible=True)

def process_uploaded_image(image_path):
    image = Image.open(image_path)
    width, height = image.size
    max_dim = max(width, height)
    if max_dim > 1024:
        if width > height:
            new_width = 1024
            new_height = int((1024 / width) * height)
        else:
            new_height = 1024
            new_width = int((1024 / height) * width)
        image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
        image.save(image_path)
    return image_path

def update_seed(is_randomize_seed, seed):
    if is_randomize_seed:
        return random.randint(0, max_64_bit_int)
    return seed

def reset():
    return [
        None,  # input_image
        "",  # prompt
        'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.',  # a_prompt
        'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth',  # n_prompt
        1,  # num_samples
        1024,  # min_size
        1,  # downscale
        2,  # upscale
        default_setting.edm_steps if torch.cuda.device_count() > 0 else 1,  # edm_steps
        -1.0,  # s_stage1
        1.0,  # s_stage2
        default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,  # s_cfg
        random.randint(0, max_64_bit_int),  # seed
        5,  # s_churn
        1.003,  # s_noise
        'Wavelet',  # color_fix_type
        'fp32',  # diff_dtype
        'fp32',  # ae_dtype
        1.0,  # gamma_correction
        True,  # linear_CFG
        False,  # linear_s_stage2
        default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,  # spt_linear_CFG
        0.0,  # spt_linear_s_stage2
        'v0-Q',  # model_select
        4  # allocation
    ]

def check(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to restore.")

def stage2_process(
    input_image,
    prompt,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    downscale,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    diff_dtype,
    ae_dtype,
    gamma_correction,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    model_select,
    allocation
):
    try:
        return restore_in_Xmin(
            input_image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            min_size,
            downscale,
            upscale,
            edm_steps,
            s_stage1,
            s_stage2,
            s_cfg,
            seed,
            s_churn,
            s_noise,
            color_fix_type,
            diff_dtype,
            ae_dtype,
            gamma_correction,
            linear_CFG,
            linear_s_stage2,
            spt_linear_CFG,
            spt_linear_s_stage2,
            model_select,
            allocation
        )
    except Exception as e:
        print(f"Exception occurred: {str(e)}")
        raise e

def restore_in_Xmin(
    input_image_path,
    prompt,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    downscale,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    diff_dtype,
    ae_dtype,
    gamma_correction,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    model_select,
    allocation
):
    print("Starting image restoration process...")
    input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", input_image_path)

    if input_format.lower() not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
        gr.Warning('Invalid image format. Please use a supported image format.')
        return None, None, None

    if prompt is None:
        prompt = ""

    if a_prompt is None:
        a_prompt = ""

    if n_prompt is None:
        n_prompt = ""

    if prompt != "" and a_prompt != "":
        a_prompt = prompt + ", " + a_prompt
    else:
        a_prompt = prompt + a_prompt
    print("Final prompt: " + str(a_prompt))

    denoise_image = np.array(Image.open(input_image_path))

    if downscale > 1:
        input_height, input_width, input_channel = denoise_image.shape
        denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))

    denoise_image = HWC3(denoise_image)

    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return [input_image_path, denoise_image], gr.update(value="GPU not available."), gr.update(visible=True)

    if model_select != model.current_model:
        print('Loading model: ' + model_select)
        if model_select == 'v0-Q':
            model.load_state_dict(ckpt_Q, strict=False)
        elif model_select == 'v0-F':
            model.load_state_dict(ckpt_F, strict=False)
        model.current_model = model_select

    model.ae_dtype = convert_dtype(ae_dtype)
    model.model.dtype = convert_dtype(diff_dtype)

    # Allocation
    allocation_functions = {
        1: restore_in_1min,
        2: restore_in_2min,
        3: restore_in_3min,
        4: restore_in_4min,
        5: restore_in_5min,
        6: restore_in_6min,
        7: restore_in_7min,
        8: restore_in_8min,
        9: restore_in_9min,
        10: restore_in_10min,
    }

    restore_function = allocation_functions.get(allocation, restore_in_4min)
    return restore_function(
        input_image_path, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale,
        edm_steps, s_stage1, s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type,
        diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG,
        spt_linear_s_stage2, model_select, allocation
    )

@spaces.GPU(duration=59)
def restore_in_1min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=119)
def restore_in_2min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=179)
def restore_in_3min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=239)
def restore_in_4min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=299)
def restore_in_5min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=359)
def restore_in_6min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=419)
def restore_in_7min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=479)
def restore_in_8min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=539)
def restore_in_9min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

@spaces.GPU(duration=599)
def restore_in_10min(*args, **kwargs):
    return restore_on_gpu(*args, **kwargs)

def restore_on_gpu(
    input_image_path,
    prompt,
    a_prompt,
    n_prompt,
    num_samples,
    min_size,
    downscale,
    upscale,
    edm_steps,
    s_stage1,
    s_stage2,
    s_cfg,
    seed,
    s_churn,
    s_noise,
    color_fix_type,
    diff_dtype,
    ae_dtype,
    gamma_correction,
    linear_CFG,
    linear_s_stage2,
    spt_linear_CFG,
    spt_linear_s_stage2,
    model_select,
    allocation
):
    start = time.time()
    print('Starting GPU restoration...')

    torch.cuda.set_device(SUPIR_device)

    with torch.no_grad():
        # Convert input image to NumPy array and ensure it has 3 channels
        input_image = HWC3(np.array(Image.open(input_image_path)))
        input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
        LQ = input_image / 255.0
        LQ = np.power(LQ, gamma_correction)
        LQ *= 255.0
        LQ = LQ.round().clip(0, 255).astype(np.uint8)
        LQ = LQ / 255 * 2 - 1
        LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
        captions = ['']

        samples = model.batchify_sample(
            LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
            s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
            num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
            use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
            cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2
        )

        x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
            0, 255).astype(np.uint8)
        results = [x_samples[i] for i in range(num_samples)]
    torch.cuda.empty_cache()

    input_height, input_width, input_channel = input_image.shape
    result_height, result_width, result_channel = results[0].shape

    print('Restoration completed.')
    end = time.time()
    secondes = int(end - start)
    minutes = math.floor(secondes / 60)
    secondes = secondes - (minutes * 60)
    hours = math.floor(minutes / 60)
    minutes = minutes - (hours * 60)
    information = ("Start the process again if you want a different result. " if seed is not None else "") + \
        "The image has been enhanced successfully."

    # Save the result image to a temporary file for downloading
    result_image = Image.fromarray(results[0])
    result_image_path = f"result_{uuid.uuid4().hex}.png"
    result_image.save(result_image_path)

    # Update the result slider with the before and after images
    return [input_image_path, result_image_path], gr.update(value=information, visible=True), gr.update(visible=True)

def load_and_reset(param_setting):
    print('Resetting parameters...')
    if torch.cuda.device_count() == 0:
        gr.Warning('Set this space to GPU config to make it work.')
        return None, None, None, None, None, None, None, None, None, None, None, None, None
    edm_steps = default_setting.edm_steps
    s_stage2 = 1.0
    s_stage1 = -1.0
    s_churn = 5
    s_noise = 1.003
    a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
               'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
               'detailing, hyper sharpness, perfect without deformations.'
    n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \
               '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
               'signature, jpeg artifacts, deformed, lowres, over-smooth'
    color_fix_type = 'Wavelet'
    spt_linear_s_stage2 = 0.0
    linear_s_stage2 = False
    linear_CFG = True
    if param_setting == "Quality":
        s_cfg = default_setting.s_cfg_Quality
        spt_linear_CFG = default_setting.spt_linear_CFG_Quality
        model_select = "v0-Q"
    elif param_setting == "Fidelity":
        s_cfg = default_setting.s_cfg_Fidelity
        spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
        model_select = "v0-F"
    else:
        raise NotImplementedError
    gr.Info('The parameters are reset.')
    print('Parameters reset completed.')
    return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
        linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select

def log_information(result_slider):
    print('Logging information...')
    if result_slider is not None:
        print(result_slider)

title_html = """
    <h1><center>Maree's Magical Photo Tool</center></h1>
    """

# Gradio interface
with gr.Blocks() as interface:
    if torch.cuda.device_count() == 0:
        with gr.Row():
            gr.HTML("""
    <p style="background-color: red;"><big><big><big><b>⚠️To use this tool, set a GPU with sufficient VRAM.</b></big></big></big></p>
    """)
    gr.HTML(title_html)

    input_image = gr.Image(label="Upload your photo", show_label=True, type="filepath", height=400, elem_id="image-input")
    with gr.Group():
        prompt = gr.Textbox(
            label="Describe your photo",
            info="Tell me about your photo so I can make it better.",
            value="",
            placeholder="Type a description...",
            lines=3
        )
        upscale = gr.Radio(
            [["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4]],
            label="Upscale factor",
            info="Choose how much to enlarge the photo",
            value=2,
            interactive=True
        )
        allocation = gr.Radio(
            [["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5]],
            label="GPU allocation time (for Jon)",
            info="You can ignore this setting",
            value=4,
            interactive=True
        )

    gamma_correction = gr.Number(value=1.0, visible=False)  # Hidden component with default value 1.0

    with gr.Accordion("Advanced options", open=False):
        a_prompt = gr.Textbox(
            label="Additional image description",
            info="Completes the main image description",
            value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
                  'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
                  'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
                  'hyper sharpness, perfect without deformations.',
            lines=3
        )
        n_prompt = gr.Textbox(
            label="Negative image description",
            info="Disambiguate by listing what the image does NOT represent",
            value='painting, oil painting, illustration, drawing, art, sketch, anime, '
                  'cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, '
                  'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
                  'deformed, lowres, over-smooth',
            lines=3
        )
        edm_steps = gr.Slider(
            label="Steps",
            info="Lower=faster, higher=more details",
            minimum=1,
            maximum=200,
            value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1,
            step=1
        )
        num_samples = gr.Slider(
            label="Num Samples",
            info="Number of generated results",
            minimum=1,
            maximum=4 if not args.use_image_slider else 1,
            value=1,
            step=1
        )
        min_size = gr.Slider(
            label="Minimum size",
            info="Minimum height, minimum width of the result",
            minimum=32,
            maximum=4096,
            value=1024,
            step=32
        )
        downscale = gr.Radio(
            [["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4]],
            label="Pre-downscale factor",
            info="Reducing blurred image reduces the process time",
            value=1,
            interactive=True
        )
        with gr.Row():
            with gr.Column():
                model_select = gr.Radio(
                    [["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]],
                    label="Model Selection",
                    info="Pretrained model",
                    value="v0-Q",
                    interactive=True
                )
            with gr.Column():
                color_fix_type = gr.Radio(
                    [["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]],
                    label="Color-Fix Type",
                    info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts",
                    value="AdaIn",
                    interactive=True
                )
        s_cfg = gr.Slider(
            label="Text Guidance Scale",
            info="Lower=follow the image, higher=follow the prompt",
            minimum=1.0,
            maximum=15.0,
            value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
            step=0.1
        )
        s_stage2 = gr.Slider(
            label="Restoring Guidance Strength",
            minimum=0.,
            maximum=1.,
            value=1.,
            step=0.05
        )
        s_stage1 = gr.Slider(
            label="Pre-denoising Guidance Strength",
            minimum=-1.0,
            maximum=6.0,
            value=-1.0,
            step=1.0
        )
        s_churn = gr.Slider(
            label="S-Churn",
            minimum=0,
            maximum=40,
            value=5,
            step=1
        )
        s_noise = gr.Slider(
            label="S-Noise",
            minimum=1.0,
            maximum=1.1,
            value=1.003,
            step=0.001
        )
        with gr.Row():
            with gr.Column():
                linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
                spt_linear_CFG = gr.Slider(
                    label="CFG Start",
                    minimum=1.0,
                    maximum=9.0,
                    value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
                    step=0.5
                )
            with gr.Column():
                linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
                spt_linear_s_stage2 = gr.Slider(
                    label="Guidance Start",
                    minimum=0.,
                    maximum=1.,
                    value=0.,
                    step=0.05
                )
            with gr.Column():
                diff_dtype = gr.Radio(
                    [["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]],
                    label="Diffusion Data Type",
                    value="fp32",
                    interactive=True
                )
            with gr.Column():
                ae_dtype = gr.Radio(
                    [["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]],
                    label="Auto-Encoder Data Type",
                    value="fp32",
                    interactive=True
                )
        randomize_seed = gr.Checkbox(
            label="\U0001F3B2 Randomize seed",
            value=True,
            info="If checked, result is always different"
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=max_64_bit_int,
            step=1,
            randomize=True
        )
        with gr.Group():
            param_setting = gr.Radio(
                ["Quality", "Fidelity"],
                interactive=True,
                label="Presetting",
                value="Quality"
            )
            restart_button = gr.Button(value="Apply presetting")

    with gr.Column():
        diffusion_button = gr.Button(
            value="🚀 Enhance Photo",
            variant="primary",
            elem_id="process_button"
        )
        reset_btn = gr.Button(
            value="🧹 Reset",
            variant="stop",
            elem_id="reset_button",
            visible=False
        )

        restore_information = gr.HTML(
            value="Start the process again if you want a different result.",
            visible=False
        )
        result_slider = ImageSlider(
            label='Result',
            show_label=False,
            interactive=False,
            elem_id="slider1",
            show_download_button=True  # Enable the download button
        )

    input_image.upload(
        fn=process_uploaded_image,
        inputs=input_image,
        outputs=input_image,
        queue=False
    )

    input_image.upload(
        fn=check_upload,
        inputs=input_image,
        outputs=[],
        queue=False,
        show_progress=False
    )

    diffusion_button.click(
        fn=update_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
        queue=False,
        show_progress=False
    ).then(
        fn=check,
        inputs=[input_image],
        outputs=[],
        queue=False,
        show_progress=False
    ).success(
        fn=stage2_process,
        inputs=[
            input_image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            min_size,
            downscale,
            upscale,
            edm_steps,
            s_stage1,
            s_stage2,
            s_cfg,
            seed,
            s_churn,
            s_noise,
            color_fix_type,
            diff_dtype,
            ae_dtype,
            gamma_correction,  # Use the hidden gamma_correction component
            linear_CFG,
            linear_s_stage2,
            spt_linear_CFG,
            spt_linear_s_stage2,
            model_select,
            allocation
        ],
        outputs=[
            result_slider,
            restore_information,
            reset_btn
        ]
    ).success(
        fn=log_information,
        inputs=[result_slider],
        outputs=[],
        queue=False,
        show_progress=False
    )

    restart_button.click(
        fn=load_and_reset,
        inputs=[param_setting],
        outputs=[
            edm_steps,
            s_cfg,
            s_stage2,
            s_stage1,
            s_churn,
            s_noise,
            a_prompt,
            n_prompt,
            color_fix_type,
            linear_CFG,
            linear_s_stage2,
            spt_linear_CFG,
            spt_linear_s_stage2,
            model_select
        ]
    )

    reset_btn.click(
        fn=reset,
        inputs=[],
        outputs=[
            input_image,
            prompt,
            a_prompt,
            n_prompt,
            num_samples,
            min_size,
            downscale,
            upscale,
            edm_steps,
            s_stage1,
            s_stage2,
            s_cfg,
            seed,
            s_churn,
            s_noise,
            color_fix_type,
            diff_dtype,
            ae_dtype,
            gamma_correction,  # Use the hidden gamma_correction component
            linear_CFG,
            linear_s_stage2,
            spt_linear_CFG,
            spt_linear_s_stage2,
            model_select,
            allocation
        ],
        queue=False,
        show_progress=False
    )

    interface.queue(10).launch()