File size: 8,894 Bytes
e8243c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import torch
from sgm.models.diffusion import DiffusionEngine
from sgm.util import instantiate_from_config
import copy
from sgm.modules.distributions.distributions import DiagonalGaussianDistribution
import random
from SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization
from pytorch_lightning import seed_everything
from torch.nn.functional import interpolate
from SUPIR.utils.tilevae import VAEHook
class SUPIRModel(DiffusionEngine):
def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs):
super().__init__(*args, **kwargs)
control_model = instantiate_from_config(control_stage_config)
self.model.load_control_model(control_model)
self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder)
self.sampler_config = kwargs['sampler_config']
assert (ae_dtype in ['fp32', 'fp16', 'bf16']) and (diffusion_dtype in ['fp32', 'fp16', 'bf16'])
if ae_dtype == 'fp32':
ae_dtype = torch.float32
elif ae_dtype == 'fp16':
raise RuntimeError('fp16 cause NaN in AE')
elif ae_dtype == 'bf16':
ae_dtype = torch.bfloat16
if diffusion_dtype == 'fp32':
diffusion_dtype = torch.float32
elif diffusion_dtype == 'fp16':
diffusion_dtype = torch.float16
elif diffusion_dtype == 'bf16':
diffusion_dtype = torch.bfloat16
self.ae_dtype = ae_dtype
self.model.dtype = diffusion_dtype
self.p_p = p_p
self.n_p = n_p
@torch.no_grad()
def encode_first_stage(self, x):
with torch.autocast("cuda", dtype=self.ae_dtype):
z = self.first_stage_model.encode(x)
z = self.scale_factor * z
return z
@torch.no_grad()
def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
with torch.autocast("cuda", dtype=self.ae_dtype):
if is_stage1:
h = self.first_stage_model.denoise_encoder_s1(x)
else:
h = self.first_stage_model.denoise_encoder(x)
moments = self.first_stage_model.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
if use_sample:
z = posterior.sample()
else:
z = posterior.mode()
z = self.scale_factor * z
return z
@torch.no_grad()
def decode_first_stage(self, z):
z = 1.0 / self.scale_factor * z
with torch.autocast("cuda", dtype=self.ae_dtype):
out = self.first_stage_model.decode(z)
return out.float()
@torch.no_grad()
def batchify_denoise(self, x, is_stage1=False):
'''
[N, C, H, W], [-1, 1], RGB
'''
x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1)
return self.decode_first_stage(x)
@torch.no_grad()
def batchify_sample(self, x, p, p_p='default', n_p='default', num_steps=100, restoration_scale=4.0, s_churn=0, s_noise=1.003, cfg_scale=4.0, seed=-1,
num_samples=1, control_scale=1, color_fix_type='None', use_linear_CFG=False, use_linear_control_scale=False,
cfg_scale_start=1.0, control_scale_start=0.0, **kwargs):
'''
[N, C], [-1, 1], RGB
'''
assert len(x) == len(p)
assert color_fix_type in ['Wavelet', 'AdaIn', 'None']
N = len(x)
if num_samples > 1:
assert N == 1
N = num_samples
x = x.repeat(N, 1, 1, 1)
p = p * N
if p_p == 'default':
p_p = self.p_p
if n_p == 'default':
n_p = self.n_p
self.sampler_config.params.num_steps = num_steps
if use_linear_CFG:
self.sampler_config.params.guider_config.params.scale_min = cfg_scale
self.sampler_config.params.guider_config.params.scale = cfg_scale_start
else:
self.sampler_config.params.guider_config.params.scale_min = cfg_scale
self.sampler_config.params.guider_config.params.scale = cfg_scale
self.sampler_config.params.restore_cfg = restoration_scale
self.sampler_config.params.s_churn = s_churn
self.sampler_config.params.s_noise = s_noise
self.sampler = instantiate_from_config(self.sampler_config)
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
_z = self.encode_first_stage_with_denoise(x, use_sample=False)
x_stage1 = self.decode_first_stage(_z)
z_stage1 = self.encode_first_stage(x_stage1)
c, uc = self.prepare_condition(_z, p, p_p, n_p, N)
denoiser = lambda input, sigma, c, control_scale: self.denoiser(
self.model, input, sigma, c, control_scale, **kwargs
)
noised_z = torch.randn_like(_z).to(_z.device)
_samples = self.sampler(denoiser, noised_z, cond=c, uc=uc, x_center=z_stage1, control_scale=control_scale,
use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start)
samples = self.decode_first_stage(_samples)
if color_fix_type == 'Wavelet':
samples = wavelet_reconstruction(samples, x_stage1)
elif color_fix_type == 'AdaIn':
samples = adaptive_instance_normalization(samples, x_stage1)
return samples
def init_tile_vae(self, encoder_tile_size=512, decoder_tile_size=64):
self.first_stage_model.denoise_encoder.original_forward = self.first_stage_model.denoise_encoder.forward
self.first_stage_model.encoder.original_forward = self.first_stage_model.encoder.forward
self.first_stage_model.decoder.original_forward = self.first_stage_model.decoder.forward
self.first_stage_model.denoise_encoder.forward = VAEHook(
self.first_stage_model.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
fast_encoder=False, color_fix=False, to_gpu=True)
self.first_stage_model.encoder.forward = VAEHook(
self.first_stage_model.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
fast_encoder=False, color_fix=False, to_gpu=True)
self.first_stage_model.decoder.forward = VAEHook(
self.first_stage_model.decoder, decoder_tile_size, is_decoder=True, fast_decoder=False,
fast_encoder=False, color_fix=False, to_gpu=True)
def prepare_condition(self, _z, p, p_p, n_p, N):
batch = {}
batch['original_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
batch['crop_coords_top_left'] = torch.tensor([0, 0]).repeat(N, 1).to(_z.device)
batch['target_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
batch['aesthetic_score'] = torch.tensor([9.0]).repeat(N, 1).to(_z.device)
batch['control'] = _z
batch_uc = copy.deepcopy(batch)
batch_uc['txt'] = [n_p for _ in p]
if not isinstance(p[0], list):
batch['txt'] = [''.join([_p, p_p]) for _p in p]
with torch.cuda.amp.autocast(dtype=self.ae_dtype):
c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
else:
assert len(p) == 1, 'Support bs=1 only for local prompt conditioning.'
p_tiles = p[0]
c = []
for i, p_tile in enumerate(p_tiles):
batch['txt'] = [''.join([p_tile, p_p])]
with torch.cuda.amp.autocast(dtype=self.ae_dtype):
if i == 0:
_c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
else:
_c, _ = self.conditioner.get_unconditional_conditioning(batch, None)
c.append(_c)
return c, uc
if __name__ == '__main__':
from SUPIR.util import create_model, load_state_dict
model = create_model('../../options/dev/SUPIR_paper_version.yaml')
SDXL_CKPT = '/opt/data/private/AIGC_pretrain/SDXL_cache/sd_xl_base_1.0_0.9vae.safetensors'
SUPIR_CKPT = '/opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-paper.ckpt'
model.load_state_dict(load_state_dict(SDXL_CKPT), strict=False)
model.load_state_dict(load_state_dict(SUPIR_CKPT), strict=False)
model = model.cuda()
x = torch.randn(1, 3, 512, 512).cuda()
p = ['a professional, detailed, high-quality photo']
samples = model.batchify_sample(x, p, num_steps=50, restoration_scale=4.0, s_churn=0, cfg_scale=4.0, seed=-1, num_samples=1)
|