Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,923 Bytes
c284f61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
# from einops._torch_specific import allow_ops_in_compiled_graph
# allow_ops_in_compiled_graph()
import einops
import torch
import torch as th
import torch.nn as nn
from einops import rearrange, repeat
from sgm.modules.diffusionmodules.util import (
avg_pool_nd,
checkpoint,
conv_nd,
linear,
normalization,
timestep_embedding,
zero_module,
)
from sgm.modules.diffusionmodules.openaimodel import Downsample, Upsample, UNetModel, Timestep, \
TimestepEmbedSequential, ResBlock, AttentionBlock, TimestepBlock
from sgm.modules.attention import SpatialTransformer, MemoryEfficientCrossAttention, CrossAttention
from sgm.util import default, log_txt_as_img, exists, instantiate_from_config
import re
import torch
from functools import partial
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
# dummy replace
def convert_module_to_f16(x):
pass
def convert_module_to_f32(x):
pass
class ZeroConv(nn.Module):
def __init__(self, label_nc, norm_nc, mask=False):
super().__init__()
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
self.mask = mask
def forward(self, c, h, h_ori=None):
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
if not self.mask:
h = h + self.zero_conv(c)
else:
h = h + self.zero_conv(c) * torch.zeros_like(h)
if h_ori is not None:
h = th.cat([h_ori, h], dim=1)
return h
class ZeroSFT(nn.Module):
def __init__(self, label_nc, norm_nc, concat_channels=0, norm=True, mask=False):
super().__init__()
# param_free_norm_type = str(parsed.group(1))
ks = 3
pw = ks // 2
self.norm = norm
if self.norm:
self.param_free_norm = normalization(norm_nc + concat_channels)
else:
self.param_free_norm = nn.Identity()
nhidden = 128
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
nn.SiLU()
)
self.zero_mul = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
self.zero_add = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
# self.zero_mul = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)
# self.zero_add = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)
self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
self.pre_concat = bool(concat_channels != 0)
self.mask = mask
def forward(self, c, h, h_ori=None, control_scale=1):
assert self.mask is False
if h_ori is not None and self.pre_concat:
h_raw = th.cat([h_ori, h], dim=1)
else:
h_raw = h
if self.mask:
h = h + self.zero_conv(c) * torch.zeros_like(h)
else:
h = h + self.zero_conv(c)
if h_ori is not None and self.pre_concat:
h = th.cat([h_ori, h], dim=1)
actv = self.mlp_shared(c)
gamma = self.zero_mul(actv)
beta = self.zero_add(actv)
if self.mask:
gamma = gamma * torch.zeros_like(gamma)
beta = beta * torch.zeros_like(beta)
h = self.param_free_norm(h) * (gamma + 1) + beta
if h_ori is not None and not self.pre_concat:
h = th.cat([h_ori, h], dim=1)
return h * control_scale + h_raw * (1 - control_scale)
class ZeroCrossAttn(nn.Module):
ATTENTION_MODES = {
"softmax": CrossAttention, # vanilla attention
"softmax-xformers": MemoryEfficientCrossAttention
}
def __init__(self, context_dim, query_dim, zero_out=True, mask=False):
super().__init__()
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
assert attn_mode in self.ATTENTION_MODES
attn_cls = self.ATTENTION_MODES[attn_mode]
self.attn = attn_cls(query_dim=query_dim, context_dim=context_dim, heads=query_dim//64, dim_head=64)
self.norm1 = normalization(query_dim)
self.norm2 = normalization(context_dim)
self.mask = mask
# if zero_out:
# # for p in self.attn.to_out.parameters():
# # p.detach().zero_()
# self.attn.to_out = zero_module(self.attn.to_out)
def forward(self, context, x, control_scale=1):
assert self.mask is False
x_in = x
x = self.norm1(x)
context = self.norm2(context)
b, c, h, w = x.shape
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
context = rearrange(context, 'b c h w -> b (h w) c').contiguous()
x = self.attn(x, context)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
if self.mask:
x = x * torch.zeros_like(x)
x = x_in + x * control_scale
return x
class GLVControl(nn.Module):
def __init__(
self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
spatial_transformer_attn_type="softmax",
adm_in_channels=None,
use_fairscale_checkpoint=False,
offload_to_cpu=False,
transformer_depth_middle=None,
input_upscale=1,
):
super().__init__()
from omegaconf.listconfig import ListConfig
if use_spatial_transformer:
assert (
context_dim is not None
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
if context_dim is not None:
assert (
use_spatial_transformer
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert (
num_head_channels != -1
), "Either num_heads or num_head_channels has to be set"
if num_head_channels == -1:
assert (
num_heads != -1
), "Either num_heads or num_head_channels has to be set"
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(transformer_depth, int):
transformer_depth = len(channel_mult) * [transformer_depth]
elif isinstance(transformer_depth, ListConfig):
transformer_depth = list(transformer_depth)
transformer_depth_middle = default(
transformer_depth_middle, transformer_depth[-1]
)
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError(
"provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult"
)
self.num_res_blocks = num_res_blocks
# self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(
map(
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
range(len(num_attention_blocks)),
)
)
print(
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set."
) # todo: convert to warning
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
if use_fp16:
print("WARNING: use_fp16 was dropped and has no effect anymore.")
# self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
assert use_fairscale_checkpoint != use_checkpoint or not (
use_checkpoint or use_fairscale_checkpoint
)
self.use_fairscale_checkpoint = False
checkpoint_wrapper_fn = (
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
if self.use_fairscale_checkpoint
else lambda x: x
)
time_embed_dim = model_channels * 4
self.time_embed = checkpoint_wrapper_fn(
nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "timestep":
self.label_emb = checkpoint_wrapper_fn(
nn.Sequential(
Timestep(model_channels),
nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
),
)
)
elif self.num_classes == "sequential":
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
linear(adm_in_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
)
else:
raise ValueError()
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
checkpoint_wrapper_fn(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = (
ch // num_heads
if use_spatial_transformer
else num_head_channels
)
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if (
not exists(num_attention_blocks)
or nr < num_attention_blocks[level]
):
layers.append(
checkpoint_wrapper_fn(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
)
)
if not use_spatial_transformer
else checkpoint_wrapper_fn(
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth[level],
context_dim=context_dim,
disable_self_attn=disabled_sa,
use_linear=use_linear_in_transformer,
attn_type=spatial_transformer_attn_type,
use_checkpoint=use_checkpoint,
)
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
checkpoint_wrapper_fn(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
checkpoint_wrapper_fn(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
),
checkpoint_wrapper_fn(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
)
)
if not use_spatial_transformer
else checkpoint_wrapper_fn(
SpatialTransformer( # always uses a self-attn
ch,
num_heads,
dim_head,
depth=transformer_depth_middle,
context_dim=context_dim,
disable_self_attn=disable_middle_self_attn,
use_linear=use_linear_in_transformer,
attn_type=spatial_transformer_attn_type,
use_checkpoint=use_checkpoint,
)
),
checkpoint_wrapper_fn(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
),
)
self.input_upscale = input_upscale
self.input_hint_block = TimestepEmbedSequential(
zero_module(conv_nd(dims, in_channels, model_channels, 3, padding=1))
)
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.input_blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
def forward(self, x, timesteps, xt, context=None, y=None, **kwargs):
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
# x = x.to(torch.float32)
# timesteps = timesteps.to(torch.float32)
# xt = xt.to(torch.float32)
# context = context.to(torch.float32)
# y = y.to(torch.float32)
# print(x.dtype)
xt, context, y = xt.to(x.dtype), context.to(x.dtype), y.to(x.dtype)
if self.input_upscale != 1:
x = nn.functional.interpolate(x, scale_factor=self.input_upscale, mode='bilinear', antialias=True)
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
# import pdb
# pdb.set_trace()
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == xt.shape[0]
emb = emb + self.label_emb(y)
guided_hint = self.input_hint_block(x, emb, context)
# h = x.type(self.dtype)
h = xt
for module in self.input_blocks:
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
hs.append(h)
# print(module)
# print(h.shape)
h = self.middle_block(h, emb, context)
hs.append(h)
return hs
class LightGLVUNet(UNetModel):
def __init__(self, mode='', project_type='ZeroSFT', project_channel_scale=1,
*args, **kwargs):
super().__init__(*args, **kwargs)
if mode == 'XL-base':
cond_output_channels = [320] * 4 + [640] * 3 + [1280] * 3
project_channels = [160] * 4 + [320] * 3 + [640] * 3
concat_channels = [320] * 2 + [640] * 3 + [1280] * 4 + [0]
cross_attn_insert_idx = [6, 3]
self.progressive_mask_nums = [0, 3, 7, 11]
elif mode == 'XL-refine':
cond_output_channels = [384] * 4 + [768] * 3 + [1536] * 6
project_channels = [192] * 4 + [384] * 3 + [768] * 6
concat_channels = [384] * 2 + [768] * 3 + [1536] * 7 + [0]
cross_attn_insert_idx = [9, 6, 3]
self.progressive_mask_nums = [0, 3, 6, 10, 14]
else:
raise NotImplementedError
project_channels = [int(c * project_channel_scale) for c in project_channels]
self.project_modules = nn.ModuleList()
for i in range(len(cond_output_channels)):
# if i == len(cond_output_channels) - 1:
# _project_type = 'ZeroCrossAttn'
# else:
# _project_type = project_type
_project_type = project_type
if _project_type == 'ZeroSFT':
self.project_modules.append(ZeroSFT(project_channels[i], cond_output_channels[i],
concat_channels=concat_channels[i]))
elif _project_type == 'ZeroCrossAttn':
self.project_modules.append(ZeroCrossAttn(cond_output_channels[i], project_channels[i]))
else:
raise NotImplementedError
for i in cross_attn_insert_idx:
self.project_modules.insert(i, ZeroCrossAttn(cond_output_channels[i], concat_channels[i]))
# print(self.project_modules[i])
def step_progressive_mask(self):
if len(self.progressive_mask_nums) > 0:
mask_num = self.progressive_mask_nums.pop()
for i in range(len(self.project_modules)):
if i < mask_num:
self.project_modules[i].mask = True
else:
self.project_modules[i].mask = False
return
# print(f'step_progressive_mask, current masked layers: {mask_num}')
else:
return
# print('step_progressive_mask, no more masked layers')
# for i in range(len(self.project_modules)):
# print(self.project_modules[i].mask)
def forward(self, x, timesteps=None, context=None, y=None, control=None, control_scale=1, **kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
_dtype = control[0].dtype
x, context, y = x.to(_dtype), context.to(_dtype), y.to(_dtype)
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
# h = x.type(self.dtype)
h = x
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
adapter_idx = len(self.project_modules) - 1
control_idx = len(control) - 1
h = self.middle_block(h, emb, context)
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
adapter_idx -= 1
control_idx -= 1
for i, module in enumerate(self.output_blocks):
_h = hs.pop()
h = self.project_modules[adapter_idx](control[control_idx], _h, h, control_scale=control_scale)
adapter_idx -= 1
# h = th.cat([h, _h], dim=1)
if len(module) == 3:
assert isinstance(module[2], Upsample)
for layer in module[:2]:
if isinstance(layer, TimestepBlock):
h = layer(h, emb)
elif isinstance(layer, SpatialTransformer):
h = layer(h, context)
else:
h = layer(h)
# print('cross_attn_here')
h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
adapter_idx -= 1
h = module[2](h)
else:
h = module(h, emb, context)
control_idx -= 1
# print(module)
# print(h.shape)
h = h.type(x.dtype)
if self.predict_codebook_ids:
assert False, "not supported anymore. what the f*** are you doing?"
else:
return self.out(h)
if __name__ == '__main__':
from omegaconf import OmegaConf
# refiner
# opt = OmegaConf.load('../../options/train/debug_p2_xl.yaml')
#
# model = instantiate_from_config(opt.model.params.control_stage_config)
# hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64]))
# hint = [h.cuda() for h in hint]
# print(sum(map(lambda hint: hint.numel(), model.parameters())))
#
# unet = instantiate_from_config(opt.model.params.network_config)
# unet = unet.cuda()
#
# _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(),
# torch.randn([1, 2560]).cuda(), hint)
# print(sum(map(lambda _output: _output.numel(), unet.parameters())))
# base
with torch.no_grad():
opt = OmegaConf.load('../../options/dev/SUPIR_tmp.yaml')
model = instantiate_from_config(opt.model.params.control_stage_config)
model = model.cuda()
hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 2048]).cuda(),
torch.randn([1, 2816]).cuda())
for h in hint:
print(h.shape)
#
unet = instantiate_from_config(opt.model.params.network_config)
unet = unet.cuda()
_output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 2048]).cuda(),
torch.randn([1, 2816]).cuda(), hint)
# model = instantiate_from_config(opt.model.params.control_stage_config)
# model = model.cuda()
# # hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64]))
# hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 1280]).cuda(),
# torch.randn([1, 2560]).cuda())
# # hint = [h.cuda() for h in hint]
#
# for h in hint:
# print(h.shape)
#
# unet = instantiate_from_config(opt.model.params.network_config)
# unet = unet.cuda()
# _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(),
# torch.randn([1, 2560]).cuda(), hint)
|