File size: 38,214 Bytes
a6c349f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
# ------------------------------------------------------------------------
#
#   Ultimate VAE Tile Optimization
#
#   Introducing a revolutionary new optimization designed to make
#   the VAE work with giant images on limited VRAM!
#   Say goodbye to the frustration of OOM and hello to seamless output!
#
# ------------------------------------------------------------------------
#
#   This script is a wild hack that splits the image into tiles,
#   encodes each tile separately, and merges the result back together.
#
#   Advantages:
#   - The VAE can now work with giant images on limited VRAM
#       (~10 GB for 8K images!)
#   - The merged output is completely seamless without any post-processing.
#
#   Drawbacks:
#   - Giant RAM needed. To store the intermediate results for a 4096x4096
#       images, you need 32 GB RAM it consumes ~20GB); for 8192x8192
#       you need 128 GB RAM machine (it consumes ~100 GB)
#   - NaNs always appear in for 8k images when you use fp16 (half) VAE
#       You must use --no-half-vae to disable half VAE for that giant image.
#   - Slow speed. With default tile size, it takes around 50/200 seconds
#       to encode/decode a 4096x4096 image; and 200/900 seconds to encode/decode
#       a 8192x8192 image. (The speed is limited by both the GPU and the CPU.)
#   - The gradient calculation is not compatible with this hack. It
#       will break any backward() or torch.autograd.grad() that passes VAE.
#       (But you can still use the VAE to generate training data.)
#
#   How it works:
#   1) The image is split into tiles.
#       - To ensure perfect results, each tile is padded with 32 pixels
#           on each side.
#       - Then the conv2d/silu/upsample/downsample can produce identical
#           results to the original image without splitting.
#   2) The original forward is decomposed into a task queue and a task worker.
#       - The task queue is a list of functions that will be executed in order.
#       - The task worker is a loop that executes the tasks in the queue.
#   3) The task queue is executed for each tile.
#       - Current tile is sent to GPU.
#       - local operations are directly executed.
#       - Group norm calculation is temporarily suspended until the mean
#           and var of all tiles are calculated.
#       - The residual is pre-calculated and stored and addded back later.
#       - When need to go to the next tile, the current tile is send to cpu.
#   4) After all tiles are processed, tiles are merged on cpu and return.
#
#   Enjoy!
#
#   @author: LI YI @ Nanyang Technological University - Singapore
#   @date: 2023-03-02
#   @license: MIT License
#
#   Please give me a star if you like this project!
#
# -------------------------------------------------------------------------

import gc
from time import time
import math
from tqdm import tqdm

import torch
import torch.version
import torch.nn.functional as F
from einops import rearrange
from diffusers.utils.import_utils import is_xformers_available

import SUPIR.utils.devices as devices

try:
    import xformers
    import xformers.ops
except ImportError:
    pass

sd_flag = True

def get_recommend_encoder_tile_size():
    if torch.cuda.is_available():
        total_memory = torch.cuda.get_device_properties(
            devices.device).total_memory // 2**20
        if total_memory > 16*1000:
            ENCODER_TILE_SIZE = 3072
        elif total_memory > 12*1000:
            ENCODER_TILE_SIZE = 2048
        elif total_memory > 8*1000:
            ENCODER_TILE_SIZE = 1536
        else:
            ENCODER_TILE_SIZE = 960
    else:
        ENCODER_TILE_SIZE = 512
    return ENCODER_TILE_SIZE


def get_recommend_decoder_tile_size():
    if torch.cuda.is_available():
        total_memory = torch.cuda.get_device_properties(
            devices.device).total_memory // 2**20
        if total_memory > 30*1000:
            DECODER_TILE_SIZE = 256
        elif total_memory > 16*1000:
            DECODER_TILE_SIZE = 192
        elif total_memory > 12*1000:
            DECODER_TILE_SIZE = 128
        elif total_memory > 8*1000:
            DECODER_TILE_SIZE = 96
        else:
            DECODER_TILE_SIZE = 64
    else:
        DECODER_TILE_SIZE = 64
    return DECODER_TILE_SIZE


if 'global const':
    DEFAULT_ENABLED = False
    DEFAULT_MOVE_TO_GPU = False
    DEFAULT_FAST_ENCODER = True
    DEFAULT_FAST_DECODER = True
    DEFAULT_COLOR_FIX = 0
    DEFAULT_ENCODER_TILE_SIZE = get_recommend_encoder_tile_size()
    DEFAULT_DECODER_TILE_SIZE = get_recommend_decoder_tile_size()


# inplace version of silu
def inplace_nonlinearity(x):
    # Test: fix for Nans
    return F.silu(x, inplace=True)

# extracted from ldm.modules.diffusionmodules.model

# from diffusers lib
def attn_forward_new(self, h_):
    batch_size, channel, height, width = h_.shape
    hidden_states = h_.view(batch_size, channel, height * width).transpose(1, 2)

    attention_mask = None
    encoder_hidden_states = None
    batch_size, sequence_length, _ = hidden_states.shape
    attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)

    query = self.to_q(hidden_states)

    if encoder_hidden_states is None:
        encoder_hidden_states = hidden_states
    elif self.norm_cross:
        encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)

    key = self.to_k(encoder_hidden_states)
    value = self.to_v(encoder_hidden_states)

    query = self.head_to_batch_dim(query)
    key = self.head_to_batch_dim(key)
    value = self.head_to_batch_dim(value)

    attention_probs = self.get_attention_scores(query, key, attention_mask)
    hidden_states = torch.bmm(attention_probs, value)
    hidden_states = self.batch_to_head_dim(hidden_states)

    # linear proj
    hidden_states = self.to_out[0](hidden_states)
    # dropout
    hidden_states = self.to_out[1](hidden_states)

    hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

    return hidden_states

def attn_forward_new_pt2_0(self, hidden_states,):
    scale = 1
    attention_mask = None
    encoder_hidden_states = None

    input_ndim = hidden_states.ndim

    if input_ndim == 4:
        batch_size, channel, height, width = hidden_states.shape
        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

    batch_size, sequence_length, _ = (
        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
    )

    if attention_mask is not None:
        attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        # scaled_dot_product_attention expects attention_mask shape to be
        # (batch, heads, source_length, target_length)
        attention_mask = attention_mask.view(batch_size, self.heads, -1, attention_mask.shape[-1])

    if self.group_norm is not None:
        hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

    query = self.to_q(hidden_states, scale=scale)

    if encoder_hidden_states is None:
        encoder_hidden_states = hidden_states
    elif self.norm_cross:
        encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)

    key = self.to_k(encoder_hidden_states, scale=scale)
    value = self.to_v(encoder_hidden_states, scale=scale)

    inner_dim = key.shape[-1]
    head_dim = inner_dim // self.heads

    query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)

    key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
    value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)

    # the output of sdp = (batch, num_heads, seq_len, head_dim)
    # TODO: add support for attn.scale when we move to Torch 2.1
    hidden_states = F.scaled_dot_product_attention(
        query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
    )

    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
    hidden_states = hidden_states.to(query.dtype)

    # linear proj
    hidden_states = self.to_out[0](hidden_states, scale=scale)
    # dropout
    hidden_states = self.to_out[1](hidden_states)

    if input_ndim == 4:
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

    return hidden_states

def attn_forward_new_xformers(self, hidden_states):
    scale = 1
    attention_op = None
    attention_mask = None
    encoder_hidden_states = None

    input_ndim = hidden_states.ndim

    if input_ndim == 4:
        batch_size, channel, height, width = hidden_states.shape
        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

    batch_size, key_tokens, _ = (
        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
    )

    attention_mask = self.prepare_attention_mask(attention_mask, key_tokens, batch_size)
    if attention_mask is not None:
        # expand our mask's singleton query_tokens dimension:
        #   [batch*heads,            1, key_tokens] ->
        #   [batch*heads, query_tokens, key_tokens]
        # so that it can be added as a bias onto the attention scores that xformers computes:
        #   [batch*heads, query_tokens, key_tokens]
        # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
        _, query_tokens, _ = hidden_states.shape
        attention_mask = attention_mask.expand(-1, query_tokens, -1)

    if self.group_norm is not None:
        hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

    query = self.to_q(hidden_states, scale=scale)

    if encoder_hidden_states is None:
        encoder_hidden_states = hidden_states
    elif self.norm_cross:
        encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)

    key = self.to_k(encoder_hidden_states, scale=scale)
    value = self.to_v(encoder_hidden_states, scale=scale)

    query = self.head_to_batch_dim(query).contiguous()
    key = self.head_to_batch_dim(key).contiguous()
    value = self.head_to_batch_dim(value).contiguous()

    hidden_states = xformers.ops.memory_efficient_attention(
        query, key, value, attn_bias=attention_mask, op=attention_op#, scale=scale
    )
    hidden_states = hidden_states.to(query.dtype)
    hidden_states = self.batch_to_head_dim(hidden_states)

    # linear proj
    hidden_states = self.to_out[0](hidden_states, scale=scale)
    # dropout
    hidden_states = self.to_out[1](hidden_states)

    if input_ndim == 4:
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

    return hidden_states

def attn_forward(self, h_):
    q = self.q(h_)
    k = self.k(h_)
    v = self.v(h_)

    # compute attention
    b, c, h, w = q.shape
    q = q.reshape(b, c, h*w)
    q = q.permute(0, 2, 1)   # b,hw,c
    k = k.reshape(b, c, h*w)  # b,c,hw
    w_ = torch.bmm(q, k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
    w_ = w_ * (int(c)**(-0.5))
    w_ = torch.nn.functional.softmax(w_, dim=2)

    # attend to values
    v = v.reshape(b, c, h*w)
    w_ = w_.permute(0, 2, 1)   # b,hw,hw (first hw of k, second of q)
    # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
    h_ = torch.bmm(v, w_)
    h_ = h_.reshape(b, c, h, w)

    h_ = self.proj_out(h_)

    return h_


def xformer_attn_forward(self, h_):
    q = self.q(h_)
    k = self.k(h_)
    v = self.v(h_)

    # compute attention
    B, C, H, W = q.shape
    q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))

    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(B, t.shape[1], 1, C)
        .permute(0, 2, 1, 3)
        .reshape(B * 1, t.shape[1], C)
        .contiguous(),
        (q, k, v),
    )
    out = xformers.ops.memory_efficient_attention(
        q, k, v, attn_bias=None, op=self.attention_op)

    out = (
        out.unsqueeze(0)
        .reshape(B, 1, out.shape[1], C)
        .permute(0, 2, 1, 3)
        .reshape(B, out.shape[1], C)
    )
    out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
    out = self.proj_out(out)
    return out


def attn2task(task_queue, net):
    if False: #isinstance(net, AttnBlock):
        task_queue.append(('store_res', lambda x: x))
        task_queue.append(('pre_norm', net.norm))
        task_queue.append(('attn', lambda x, net=net: attn_forward(net, x)))
        task_queue.append(['add_res', None])
    elif False: #isinstance(net, MemoryEfficientAttnBlock):
        task_queue.append(('store_res', lambda x: x))
        task_queue.append(('pre_norm', net.norm))
        task_queue.append(
            ('attn', lambda x, net=net: xformer_attn_forward(net, x)))
        task_queue.append(['add_res', None])
    else:
        task_queue.append(('store_res', lambda x: x))
        task_queue.append(('pre_norm', net.norm))
        if is_xformers_available:
            # task_queue.append(('attn', lambda x, net=net: attn_forward_new_xformers(net, x)))
            task_queue.append(
                ('attn', lambda x, net=net: xformer_attn_forward(net, x)))
        elif hasattr(F, "scaled_dot_product_attention"):
            task_queue.append(('attn', lambda x, net=net: attn_forward_new_pt2_0(net, x)))
        else:
            task_queue.append(('attn', lambda x, net=net: attn_forward_new(net, x)))
        task_queue.append(['add_res', None])

def resblock2task(queue, block):
    """

    Turn a ResNetBlock into a sequence of tasks and append to the task queue



    @param queue: the target task queue

    @param block: ResNetBlock



    """
    if block.in_channels != block.out_channels:
        if sd_flag:
            if block.use_conv_shortcut:
                queue.append(('store_res', block.conv_shortcut))
            else:
                queue.append(('store_res', block.nin_shortcut))
        else:
            if block.use_in_shortcut:
                queue.append(('store_res', block.conv_shortcut))
            else:
                queue.append(('store_res', block.nin_shortcut))

    else:
        queue.append(('store_res', lambda x: x))
    queue.append(('pre_norm', block.norm1))
    queue.append(('silu', inplace_nonlinearity))
    queue.append(('conv1', block.conv1))
    queue.append(('pre_norm', block.norm2))
    queue.append(('silu', inplace_nonlinearity))
    queue.append(('conv2', block.conv2))
    queue.append(['add_res', None])


def build_sampling(task_queue, net, is_decoder):
    """

    Build the sampling part of a task queue

    @param task_queue: the target task queue

    @param net: the network

    @param is_decoder: currently building decoder or encoder

    """
    if is_decoder:
        if sd_flag:
            resblock2task(task_queue, net.mid.block_1)
            attn2task(task_queue, net.mid.attn_1)
            print(task_queue)
            resblock2task(task_queue, net.mid.block_2)
            resolution_iter = reversed(range(net.num_resolutions))
            block_ids = net.num_res_blocks + 1
            condition = 0
            module = net.up
            func_name = 'upsample'
        else:
            resblock2task(task_queue, net.mid_block.resnets[0])
            attn2task(task_queue, net.mid_block.attentions[0])
            resblock2task(task_queue, net.mid_block.resnets[1])
            resolution_iter = (range(len(net.up_blocks)))  # net.num_resolutions = 3
            block_ids = 2 + 1
            condition = len(net.up_blocks) - 1
            module = net.up_blocks
            func_name = 'upsamplers'
    else:
        if sd_flag:
            resolution_iter = range(net.num_resolutions)
            block_ids = net.num_res_blocks
            condition = net.num_resolutions - 1
            module = net.down
            func_name = 'downsample'
        else:
            resolution_iter = range(len(net.down_blocks))
            block_ids = 2
            condition = len(net.down_blocks) - 1
            module = net.down_blocks
            func_name = 'downsamplers'

    for i_level in resolution_iter:
        for i_block in range(block_ids):
            if sd_flag:
                resblock2task(task_queue, module[i_level].block[i_block])
            else:
                resblock2task(task_queue, module[i_level].resnets[i_block])
        if i_level != condition:
            if sd_flag:
                task_queue.append((func_name, getattr(module[i_level], func_name)))
            else:
                if is_decoder:
                    task_queue.append((func_name, module[i_level].upsamplers[0]))
                else:
                    task_queue.append((func_name, module[i_level].downsamplers[0]))

    if not is_decoder:
        if sd_flag:
            resblock2task(task_queue, net.mid.block_1)
            attn2task(task_queue, net.mid.attn_1)
            resblock2task(task_queue, net.mid.block_2)
        else:
            resblock2task(task_queue, net.mid_block.resnets[0])
            attn2task(task_queue, net.mid_block.attentions[0])
            resblock2task(task_queue, net.mid_block.resnets[1])


def build_task_queue(net, is_decoder):
    """

    Build a single task queue for the encoder or decoder

    @param net: the VAE decoder or encoder network

    @param is_decoder: currently building decoder or encoder

    @return: the task queue

    """
    task_queue = []
    task_queue.append(('conv_in', net.conv_in))

    # construct the sampling part of the task queue
    # because encoder and decoder share the same architecture, we extract the sampling part
    build_sampling(task_queue, net, is_decoder)
    if is_decoder and not sd_flag:
        net.give_pre_end = False
        net.tanh_out = False

    if not is_decoder or not net.give_pre_end:
        if sd_flag:
            task_queue.append(('pre_norm', net.norm_out))
        else:
            task_queue.append(('pre_norm', net.conv_norm_out))
        task_queue.append(('silu', inplace_nonlinearity))
        task_queue.append(('conv_out', net.conv_out))
        if is_decoder and net.tanh_out:
            task_queue.append(('tanh', torch.tanh))

    return task_queue


def clone_task_queue(task_queue):
    """

    Clone a task queue

    @param task_queue: the task queue to be cloned

    @return: the cloned task queue

    """
    return [[item for item in task] for task in task_queue]


def get_var_mean(input, num_groups, eps=1e-6):
    """

    Get mean and var for group norm

    """
    b, c = input.size(0), input.size(1)
    channel_in_group = int(c/num_groups)
    input_reshaped = input.contiguous().view(
        1, int(b * num_groups), channel_in_group, *input.size()[2:])
    var, mean = torch.var_mean(
        input_reshaped, dim=[0, 2, 3, 4], unbiased=False)
    return var, mean


def custom_group_norm(input, num_groups, mean, var, weight=None, bias=None, eps=1e-6):
    """

    Custom group norm with fixed mean and var



    @param input: input tensor

    @param num_groups: number of groups. by default, num_groups = 32

    @param mean: mean, must be pre-calculated by get_var_mean

    @param var: var, must be pre-calculated by get_var_mean

    @param weight: weight, should be fetched from the original group norm

    @param bias: bias, should be fetched from the original group norm

    @param eps: epsilon, by default, eps = 1e-6 to match the original group norm



    @return: normalized tensor

    """
    b, c = input.size(0), input.size(1)
    channel_in_group = int(c/num_groups)
    input_reshaped = input.contiguous().view(
        1, int(b * num_groups), channel_in_group, *input.size()[2:])

    out = F.batch_norm(input_reshaped, mean, var, weight=None, bias=None,
                       training=False, momentum=0, eps=eps)

    out = out.view(b, c, *input.size()[2:])

    # post affine transform
    if weight is not None:
        out *= weight.view(1, -1, 1, 1)
    if bias is not None:
        out += bias.view(1, -1, 1, 1)
    return out


def crop_valid_region(x, input_bbox, target_bbox, is_decoder):
    """

    Crop the valid region from the tile

    @param x: input tile

    @param input_bbox: original input bounding box

    @param target_bbox: output bounding box

    @param scale: scale factor

    @return: cropped tile

    """
    padded_bbox = [i * 8 if is_decoder else i//8 for i in input_bbox]
    margin = [target_bbox[i] - padded_bbox[i] for i in range(4)]
    return x[:, :, margin[2]:x.size(2)+margin[3], margin[0]:x.size(3)+margin[1]]

# ↓↓↓ https://github.com/Kahsolt/stable-diffusion-webui-vae-tile-infer ↓↓↓


def perfcount(fn):
    def wrapper(*args, **kwargs):
        ts = time()

        if torch.cuda.is_available():
            torch.cuda.reset_peak_memory_stats(devices.device)
        devices.torch_gc()
        gc.collect()

        ret = fn(*args, **kwargs)

        devices.torch_gc()
        gc.collect()
        if torch.cuda.is_available():
            vram = torch.cuda.max_memory_allocated(devices.device) / 2**20
            torch.cuda.reset_peak_memory_stats(devices.device)
            print(
                f'[Tiled VAE]: Done in {time() - ts:.3f}s, max VRAM alloc {vram:.3f} MB')
        else:
            print(f'[Tiled VAE]: Done in {time() - ts:.3f}s')

        return ret
    return wrapper

# copy end :)


class GroupNormParam:
    def __init__(self):
        self.var_list = []
        self.mean_list = []
        self.pixel_list = []
        self.weight = None
        self.bias = None

    def add_tile(self, tile, layer):
        var, mean = get_var_mean(tile, 32)
        # For giant images, the variance can be larger than max float16
        # In this case we create a copy to float32
        if var.dtype == torch.float16 and var.isinf().any():
            fp32_tile = tile.float()
            var, mean = get_var_mean(fp32_tile, 32)
        # ============= DEBUG: test for infinite =============
        # if torch.isinf(var).any():
        #    print('var: ', var)
        # ====================================================
        self.var_list.append(var)
        self.mean_list.append(mean)
        self.pixel_list.append(
            tile.shape[2]*tile.shape[3])
        if hasattr(layer, 'weight'):
            self.weight = layer.weight
            self.bias = layer.bias
        else:
            self.weight = None
            self.bias = None

    def summary(self):
        """

        summarize the mean and var and return a function

        that apply group norm on each tile

        """
        if len(self.var_list) == 0:
            return None
        var = torch.vstack(self.var_list)
        mean = torch.vstack(self.mean_list)
        max_value = max(self.pixel_list)
        pixels = torch.tensor(
            self.pixel_list, dtype=torch.float32, device=devices.device) / max_value
        sum_pixels = torch.sum(pixels)
        pixels = pixels.unsqueeze(
            1) / sum_pixels
        var = torch.sum(
            var * pixels, dim=0)
        mean = torch.sum(
            mean * pixels, dim=0)
        return lambda x:  custom_group_norm(x, 32, mean, var, self.weight, self.bias)

    @staticmethod
    def from_tile(tile, norm):
        """

        create a function from a single tile without summary

        """
        var, mean = get_var_mean(tile, 32)
        if var.dtype == torch.float16 and var.isinf().any():
            fp32_tile = tile.float()
            var, mean = get_var_mean(fp32_tile, 32)
            # if it is a macbook, we need to convert back to float16
            if var.device.type == 'mps':
                # clamp to avoid overflow
                var = torch.clamp(var, 0, 60000)
                var = var.half()
                mean = mean.half()
        if hasattr(norm, 'weight'):
            weight = norm.weight
            bias = norm.bias
        else:
            weight = None
            bias = None

        def group_norm_func(x, mean=mean, var=var, weight=weight, bias=bias):
            return custom_group_norm(x, 32, mean, var, weight, bias, 1e-6)
        return group_norm_func


class VAEHook:
    def __init__(self, net, tile_size, is_decoder, fast_decoder, fast_encoder, color_fix, to_gpu=False):
        self.net = net                  # encoder | decoder
        self.tile_size = tile_size
        self.is_decoder = is_decoder
        self.fast_mode = (fast_encoder and not is_decoder) or (
            fast_decoder and is_decoder)
        self.color_fix = color_fix and not is_decoder
        self.to_gpu = to_gpu
        self.pad = 11 if is_decoder else 32

    def __call__(self, x):
        B, C, H, W = x.shape
        original_device = next(self.net.parameters()).device
        try:
            if self.to_gpu:
                self.net.to(devices.get_optimal_device())
            if max(H, W) <= self.pad * 2 + self.tile_size:
                print("[Tiled VAE]: the input size is tiny and unnecessary to tile.")
                return self.net.original_forward(x)
            else:
                return self.vae_tile_forward(x)
        finally:
            self.net.to(original_device)

    def get_best_tile_size(self, lowerbound, upperbound):
        """

        Get the best tile size for GPU memory

        """
        divider = 32
        while divider >= 2:
            remainer = lowerbound % divider
            if remainer == 0:
                return lowerbound
            candidate = lowerbound - remainer + divider
            if candidate <= upperbound:
                return candidate
            divider //= 2
        return lowerbound

    def split_tiles(self, h, w):
        """

        Tool function to split the image into tiles

        @param h: height of the image

        @param w: width of the image

        @return: tile_input_bboxes, tile_output_bboxes

        """
        tile_input_bboxes, tile_output_bboxes = [], []
        tile_size = self.tile_size
        pad = self.pad
        num_height_tiles = math.ceil((h - 2 * pad) / tile_size)
        num_width_tiles = math.ceil((w - 2 * pad) / tile_size)
        # If any of the numbers are 0, we let it be 1
        # This is to deal with long and thin images
        num_height_tiles = max(num_height_tiles, 1)
        num_width_tiles = max(num_width_tiles, 1)

        # Suggestions from https://github.com/Kahsolt: auto shrink the tile size
        real_tile_height = math.ceil((h - 2 * pad) / num_height_tiles)
        real_tile_width = math.ceil((w - 2 * pad) / num_width_tiles)
        real_tile_height = self.get_best_tile_size(real_tile_height, tile_size)
        real_tile_width = self.get_best_tile_size(real_tile_width, tile_size)

        print(f'[Tiled VAE]: split to {num_height_tiles}x{num_width_tiles} = {num_height_tiles*num_width_tiles} tiles. ' +
              f'Optimal tile size {real_tile_width}x{real_tile_height}, original tile size {tile_size}x{tile_size}')

        for i in range(num_height_tiles):
            for j in range(num_width_tiles):
                # bbox: [x1, x2, y1, y2]
                # the padding is is unnessary for image borders. So we directly start from (32, 32)
                input_bbox = [
                    pad + j * real_tile_width,
                    min(pad + (j + 1) * real_tile_width, w),
                    pad + i * real_tile_height,
                    min(pad + (i + 1) * real_tile_height, h),
                ]

                # if the output bbox is close to the image boundary, we extend it to the image boundary
                output_bbox = [
                    input_bbox[0] if input_bbox[0] > pad else 0,
                    input_bbox[1] if input_bbox[1] < w - pad else w,
                    input_bbox[2] if input_bbox[2] > pad else 0,
                    input_bbox[3] if input_bbox[3] < h - pad else h,
                ]

                # scale to get the final output bbox
                output_bbox = [x * 8 if self.is_decoder else x // 8 for x in output_bbox]
                tile_output_bboxes.append(output_bbox)

                # indistinguishable expand the input bbox by pad pixels
                tile_input_bboxes.append([
                    max(0, input_bbox[0] - pad),
                    min(w, input_bbox[1] + pad),
                    max(0, input_bbox[2] - pad),
                    min(h, input_bbox[3] + pad),
                ])

        return tile_input_bboxes, tile_output_bboxes

    @torch.no_grad()
    def estimate_group_norm(self, z, task_queue, color_fix):
        device = z.device
        tile = z
        last_id = len(task_queue) - 1
        while last_id >= 0 and task_queue[last_id][0] != 'pre_norm':
            last_id -= 1
        if last_id <= 0 or task_queue[last_id][0] != 'pre_norm':
            raise ValueError('No group norm found in the task queue')
        # estimate until the last group norm
        for i in range(last_id + 1):
            task = task_queue[i]
            if task[0] == 'pre_norm':
                group_norm_func = GroupNormParam.from_tile(tile, task[1])
                task_queue[i] = ('apply_norm', group_norm_func)
                if i == last_id:
                    return True
                tile = group_norm_func(tile)
            elif task[0] == 'store_res':
                task_id = i + 1
                while task_id < last_id and task_queue[task_id][0] != 'add_res':
                    task_id += 1
                if task_id >= last_id:
                    continue
                task_queue[task_id][1] = task[1](tile)
            elif task[0] == 'add_res':
                tile += task[1].to(device)
                task[1] = None
            elif color_fix and task[0] == 'downsample':
                for j in range(i, last_id + 1):
                    if task_queue[j][0] == 'store_res':
                        task_queue[j] = ('store_res_cpu', task_queue[j][1])
                return True
            else:
                tile = task[1](tile)
            try:
                devices.test_for_nans(tile, "vae")
            except:
                print(f'Nan detected in fast mode estimation. Fast mode disabled.')
                return False

        raise IndexError('Should not reach here')

    @perfcount
    @torch.no_grad()
    def vae_tile_forward(self, z):
        """

        Decode a latent vector z into an image in a tiled manner.

        @param z: latent vector

        @return: image

        """
        device = next(self.net.parameters()).device
        dtype = z.dtype
        net = self.net
        tile_size = self.tile_size
        is_decoder = self.is_decoder

        z = z.detach() # detach the input to avoid backprop

        N, height, width = z.shape[0], z.shape[2], z.shape[3]
        net.last_z_shape = z.shape

        # Split the input into tiles and build a task queue for each tile
        print(f'[Tiled VAE]: input_size: {z.shape}, tile_size: {tile_size}, padding: {self.pad}')

        in_bboxes, out_bboxes = self.split_tiles(height, width)

        # Prepare tiles by split the input latents
        tiles = []
        for input_bbox in in_bboxes:
            tile = z[:, :, input_bbox[2]:input_bbox[3], input_bbox[0]:input_bbox[1]].cpu()
            tiles.append(tile)

        num_tiles = len(tiles)
        num_completed = 0

        # Build task queues
        single_task_queue = build_task_queue(net, is_decoder)
        #print(single_task_queue)
        if self.fast_mode:
            # Fast mode: downsample the input image to the tile size,
            # then estimate the group norm parameters on the downsampled image
            scale_factor = tile_size / max(height, width)
            z = z.to(device)
            downsampled_z = F.interpolate(z, scale_factor=scale_factor, mode='nearest-exact')
            # use nearest-exact to keep statictics as close as possible
            print(f'[Tiled VAE]: Fast mode enabled, estimating group norm parameters on {downsampled_z.shape[3]} x {downsampled_z.shape[2]} image')

            # ======= Special thanks to @Kahsolt for distribution shift issue ======= #
            # The downsampling will heavily distort its mean and std, so we need to recover it.
            std_old, mean_old = torch.std_mean(z, dim=[0, 2, 3], keepdim=True)
            std_new, mean_new = torch.std_mean(downsampled_z, dim=[0, 2, 3], keepdim=True)
            downsampled_z = (downsampled_z - mean_new) / std_new * std_old + mean_old
            del std_old, mean_old, std_new, mean_new
            # occasionally the std_new is too small or too large, which exceeds the range of float16
            # so we need to clamp it to max z's range.
            downsampled_z = torch.clamp_(downsampled_z, min=z.min(), max=z.max())
            estimate_task_queue = clone_task_queue(single_task_queue)
            if self.estimate_group_norm(downsampled_z, estimate_task_queue, color_fix=self.color_fix):
                single_task_queue = estimate_task_queue
            del downsampled_z

        task_queues = [clone_task_queue(single_task_queue) for _ in range(num_tiles)]

        # Dummy result
        result = None
        result_approx = None
        #try:
        #    with devices.autocast():
        #        result_approx = torch.cat([F.interpolate(cheap_approximation(x).unsqueeze(0), scale_factor=opt_f, mode='nearest-exact') for x in z], dim=0).cpu()
        #except: pass
        # Free memory of input latent tensor
        del z

        # Task queue execution
        pbar = tqdm(total=num_tiles * len(task_queues[0]), desc=f"[Tiled VAE]: Executing {'Decoder' if is_decoder else 'Encoder'} Task Queue: ")

        # execute the task back and forth when switch tiles so that we always
        # keep one tile on the GPU to reduce unnecessary data transfer
        forward = True
        interrupted = False
        #state.interrupted = interrupted
        while True:
            #if state.interrupted: interrupted = True ; break

            group_norm_param = GroupNormParam()
            for i in range(num_tiles) if forward else reversed(range(num_tiles)):
                #if state.interrupted: interrupted = True ; break

                tile = tiles[i].to(device)
                input_bbox = in_bboxes[i]
                task_queue = task_queues[i]

                interrupted = False
                while len(task_queue) > 0:
                    #if state.interrupted: interrupted = True ; break

                    # DEBUG: current task
                    # print('Running task: ', task_queue[0][0], ' on tile ', i, '/', num_tiles, ' with shape ', tile.shape)
                    task = task_queue.pop(0)
                    if task[0] == 'pre_norm':
                        group_norm_param.add_tile(tile, task[1])
                        break
                    elif task[0] == 'store_res' or task[0] == 'store_res_cpu':
                        task_id = 0
                        res = task[1](tile)
                        if not self.fast_mode or task[0] == 'store_res_cpu':
                            res = res.cpu()
                        while task_queue[task_id][0] != 'add_res':
                            task_id += 1
                        task_queue[task_id][1] = res
                    elif task[0] == 'add_res':
                        tile += task[1].to(device)
                        task[1] = None
                    else:
                        tile = task[1](tile)
                        #print(tiles[i].shape, tile.shape, task)
                    pbar.update(1)

                if interrupted: break

                # check for NaNs in the tile.
                # If there are NaNs, we abort the process to save user's time
                #devices.test_for_nans(tile, "vae")

                #print(tiles[i].shape, tile.shape, i, num_tiles)
                if len(task_queue) == 0:
                    tiles[i] = None
                    num_completed += 1
                    if result is None:      # NOTE: dim C varies from different cases, can only be inited dynamically
                        result = torch.zeros((N, tile.shape[1], height * 8 if is_decoder else height // 8, width * 8 if is_decoder else width // 8), device=device, requires_grad=False)
                    result[:, :, out_bboxes[i][2]:out_bboxes[i][3], out_bboxes[i][0]:out_bboxes[i][1]] = crop_valid_region(tile, in_bboxes[i], out_bboxes[i], is_decoder)
                    del tile
                elif i == num_tiles - 1 and forward:
                    forward = False
                    tiles[i] = tile
                elif i == 0 and not forward:
                    forward = True
                    tiles[i] = tile
                else:
                    tiles[i] = tile.cpu()
                    del tile

            if interrupted: break
            if num_completed == num_tiles: break

            # insert the group norm task to the head of each task queue
            group_norm_func = group_norm_param.summary()
            if group_norm_func is not None:
                for i in range(num_tiles):
                    task_queue = task_queues[i]
                    task_queue.insert(0, ('apply_norm', group_norm_func))

        # Done!
        pbar.close()
        return result.to(dtype) if result is not None else result_approx.to(device)