Spaces:
Running
on
Zero
Running
on
Zero
# pytorch_diffusion + derived encoder decoder | |
import math | |
from typing import Any, Callable, Optional | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from packaging import version | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILABLE = True | |
except: | |
XFORMERS_IS_AVAILABLE = False | |
print("no module 'xformers'. Processing without...") | |
from ...modules.attention import LinearAttention, MemoryEfficientCrossAttention | |
def get_timestep_embedding(timesteps, embedding_dim): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: | |
From Fairseq. | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
assert len(timesteps.shape) == 1 | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
emb = emb.to(device=timesteps.device) | |
emb = timesteps.float()[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
return emb | |
def nonlinearity(x): | |
# swish | |
return x * torch.sigmoid(x) | |
def Normalize(in_channels, num_groups=32): | |
return torch.nn.GroupNorm( | |
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
class Upsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x): | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0, 1, 0, 1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
class ResnetBlock(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout, | |
temb_channels=512, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x, temb): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class LinAttnBlock(LinearAttention): | |
"""to match AttnBlock usage""" | |
def __init__(self, in_channels): | |
super().__init__(dim=in_channels, heads=1, dim_head=in_channels) | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def attention(self, h_: torch.Tensor) -> torch.Tensor: | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
b, c, h, w = q.shape | |
q, k, v = map( | |
lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v) | |
) | |
h_ = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v | |
) # scale is dim ** -0.5 per default | |
# compute attention | |
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) | |
def forward(self, x, **kwargs): | |
h_ = x | |
h_ = self.attention(h_) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class MemoryEfficientAttnBlock(nn.Module): | |
""" | |
Uses xformers efficient implementation, | |
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
Note: this is a single-head self-attention operation | |
""" | |
# | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.attention_op: Optional[Any] = None | |
def attention(self, h_: torch.Tensor) -> torch.Tensor: | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
B, C, H, W = q.shape | |
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v)) | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(B, t.shape[1], 1, C) | |
.permute(0, 2, 1, 3) | |
.reshape(B * 1, t.shape[1], C) | |
.contiguous(), | |
(q, k, v), | |
) | |
out = xformers.ops.memory_efficient_attention( | |
q, k, v, attn_bias=None, op=self.attention_op | |
) | |
out = ( | |
out.unsqueeze(0) | |
.reshape(B, 1, out.shape[1], C) | |
.permute(0, 2, 1, 3) | |
.reshape(B, out.shape[1], C) | |
) | |
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C) | |
def forward(self, x, **kwargs): | |
h_ = x | |
h_ = self.attention(h_) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): | |
def forward(self, x, context=None, mask=None, **unused_kwargs): | |
b, c, h, w = x.shape | |
x = rearrange(x, "b c h w -> b (h w) c") | |
out = super().forward(x, context=context, mask=mask) | |
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c) | |
return x + out | |
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): | |
assert attn_type in [ | |
"vanilla", | |
"vanilla-xformers", | |
"memory-efficient-cross-attn", | |
"linear", | |
"none", | |
], f"attn_type {attn_type} unknown" | |
if ( | |
version.parse(torch.__version__) < version.parse("2.0.0") | |
and attn_type != "none" | |
): | |
assert XFORMERS_IS_AVAILABLE, ( | |
f"We do not support vanilla attention in {torch.__version__} anymore, " | |
f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'" | |
) | |
attn_type = "vanilla-xformers" | |
print(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
if attn_type == "vanilla": | |
assert attn_kwargs is None | |
return AttnBlock(in_channels) | |
elif attn_type == "vanilla-xformers": | |
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") | |
return MemoryEfficientAttnBlock(in_channels) | |
elif type == "memory-efficient-cross-attn": | |
attn_kwargs["query_dim"] = in_channels | |
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) | |
elif attn_type == "none": | |
return nn.Identity(in_channels) | |
else: | |
return LinAttnBlock(in_channels) | |
class Model(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
use_timestep=True, | |
use_linear_attn=False, | |
attn_type="vanilla", | |
): | |
super().__init__() | |
if use_linear_attn: | |
attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = self.ch * 4 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.use_timestep = use_timestep | |
if self.use_timestep: | |
# timestep embedding | |
self.temb = nn.Module() | |
self.temb.dense = nn.ModuleList( | |
[ | |
torch.nn.Linear(self.ch, self.temb_ch), | |
torch.nn.Linear(self.temb_ch, self.temb_ch), | |
] | |
) | |
# downsampling | |
self.conv_in = torch.nn.Conv2d( | |
in_channels, self.ch, kernel_size=3, stride=1, padding=1 | |
) | |
curr_res = resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
skip_in = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
if i_block == self.num_res_blocks: | |
skip_in = ch * in_ch_mult[i_level] | |
block.append( | |
ResnetBlock( | |
in_channels=block_in + skip_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x, t=None, context=None): | |
# assert x.shape[2] == x.shape[3] == self.resolution | |
if context is not None: | |
# assume aligned context, cat along channel axis | |
x = torch.cat((x, context), dim=1) | |
if self.use_timestep: | |
# timestep embedding | |
assert t is not None | |
temb = get_timestep_embedding(t, self.ch) | |
temb = self.temb.dense[0](temb) | |
temb = nonlinearity(temb) | |
temb = self.temb.dense[1](temb) | |
else: | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block]( | |
torch.cat([h, hs.pop()], dim=1), temb | |
) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
def get_last_layer(self): | |
return self.conv_out.weight | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
double_z=True, | |
use_linear_attn=False, | |
attn_type="vanilla", | |
**ignore_kwargs, | |
): | |
super().__init__() | |
if use_linear_attn: | |
attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = torch.nn.Conv2d( | |
in_channels, self.ch, kernel_size=3, stride=1, padding=1 | |
) | |
curr_res = resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, | |
2 * z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
def forward(self, x): | |
# timestep embedding | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
give_pre_end=False, | |
tanh_out=False, | |
use_linear_attn=False, | |
attn_type="vanilla", | |
**ignorekwargs, | |
): | |
super().__init__() | |
if use_linear_attn: | |
attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
self.tanh_out = tanh_out | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,) + tuple(ch_mult) | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
print( | |
"Working with z of shape {} = {} dimensions.".format( | |
self.z_shape, np.prod(self.z_shape) | |
) | |
) | |
make_attn_cls = self._make_attn() | |
make_resblock_cls = self._make_resblock() | |
make_conv_cls = self._make_conv() | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d( | |
z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = make_resblock_cls( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type) | |
self.mid.block_2 = make_resblock_cls( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append( | |
make_resblock_cls( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn_cls(block_in, attn_type=attn_type)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = make_conv_cls( | |
block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
) | |
def _make_attn(self) -> Callable: | |
return make_attn | |
def _make_resblock(self) -> Callable: | |
return ResnetBlock | |
def _make_conv(self) -> Callable: | |
return torch.nn.Conv2d | |
def get_last_layer(self, **kwargs): | |
return self.conv_out.weight | |
def forward(self, z, **kwargs): | |
# assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb, **kwargs) | |
h = self.mid.attn_1(h, **kwargs) | |
h = self.mid.block_2(h, temb, **kwargs) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h, temb, **kwargs) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h, **kwargs) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h, **kwargs) | |
if self.tanh_out: | |
h = torch.tanh(h) | |
return h | |