Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from ...util import default, instantiate_from_config | |
class EDMSampling: | |
def __init__(self, p_mean=-1.2, p_std=1.2): | |
self.p_mean = p_mean | |
self.p_std = p_std | |
def __call__(self, n_samples, rand=None): | |
log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,))) | |
return log_sigma.exp() | |
class DiscreteSampling: | |
def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True, idx_range=None): | |
self.num_idx = num_idx | |
self.sigmas = instantiate_from_config(discretization_config)( | |
num_idx, do_append_zero=do_append_zero, flip=flip | |
) | |
self.idx_range = idx_range | |
def idx_to_sigma(self, idx): | |
# print(self.sigmas[idx]) | |
return self.sigmas[idx] | |
def __call__(self, n_samples, rand=None): | |
if self.idx_range is None: | |
idx = default( | |
rand, | |
torch.randint(0, self.num_idx, (n_samples,)), | |
) | |
else: | |
idx = default( | |
rand, | |
torch.randint(self.idx_range[0], self.idx_range[1], (n_samples,)), | |
) | |
return self.idx_to_sigma(idx) | |