Fabrice-TIERCELIN's picture
Upload 8 files
f12595e verified
raw
history blame
17.8 kB
import os
import gradio as gr
from gradio_imageslider import ImageSlider
import argparse
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
import numpy as np
import torch
from SUPIR.util import create_SUPIR_model, load_QF_ckpt
from PIL import Image
from llava.llava_agent import LLavaAgent
from CKPT_PTH import LLAVA_MODEL_PATH
import einops
import copy
import time
parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=False)
parser.add_argument("--use_image_slider", action='store_true', default=False)
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=False)
parser.add_argument("--use_tile_vae", action='store_true', default=False)
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
args = parser.parse_args()
server_ip = args.ip
server_port = args.port
use_llava = not args.no_llava
if torch.cuda.device_count() >= 2:
SUPIR_device = 'cuda:0'
LLaVA_device = 'cuda:1'
elif torch.cuda.device_count() == 1:
SUPIR_device = 'cuda:0'
LLaVA_device = 'cuda:0'
else:
raise ValueError('Currently support CUDA only.')
# load SUPIR
model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
if args.loading_half_params:
model = model.half()
if args.use_tile_vae:
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
model = model.to(SUPIR_device)
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
model.current_model = 'v0-Q'
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
# load LLaVA
if use_llava:
llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
else:
llava_agent = None
def stage1_process(input_image, gamma_correction):
torch.cuda.set_device(SUPIR_device)
LQ = HWC3(input_image)
LQ = fix_resize(LQ, 512)
# stage1
LQ = np.array(LQ) / 255 * 2 - 1
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
LQ = model.batchify_denoise(LQ, is_stage1=True)
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
# gamma correction
LQ = LQ / 255.0
LQ = np.power(LQ, gamma_correction)
LQ *= 255.0
LQ = LQ.round().clip(0, 255).astype(np.uint8)
return LQ
def llave_process(input_image, temperature, top_p, qs=None):
torch.cuda.set_device(LLaVA_device)
if use_llava:
LQ = HWC3(input_image)
LQ = Image.fromarray(LQ.astype('uint8'))
captions = llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs)
else:
captions = ['LLaVA is not available. Please add text manually.']
return captions[0]
def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select):
torch.cuda.set_device(SUPIR_device)
event_id = str(time.time_ns())
event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
's_stage1': s_stage1, 's_stage2': s_stage2, 's_cfg': s_cfg, 'seed': seed, 's_churn': s_churn,
's_noise': s_noise, 'color_fix_type': color_fix_type, 'diff_dtype': diff_dtype, 'ae_dtype': ae_dtype,
'gamma_correction': gamma_correction, 'linear_CFG': linear_CFG, 'linear_s_stage2': linear_s_stage2,
'spt_linear_CFG': spt_linear_CFG, 'spt_linear_s_stage2': spt_linear_s_stage2,
'model_select': model_select}
if model_select != model.current_model:
if model_select == 'v0-Q':
print('load v0-Q')
model.load_state_dict(ckpt_Q, strict=False)
model.current_model = 'v0-Q'
elif model_select == 'v0-F':
print('load v0-F')
model.load_state_dict(ckpt_F, strict=False)
model.current_model = 'v0-F'
input_image = HWC3(input_image)
input_image = upscale_image(input_image, upscale, unit_resolution=32,
min_size=1024)
LQ = np.array(input_image) / 255.0
LQ = np.power(LQ, gamma_correction)
LQ *= 255.0
LQ = LQ.round().clip(0, 255).astype(np.uint8)
LQ = LQ / 255 * 2 - 1
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
if use_llava:
captions = [prompt]
else:
captions = ['']
model.ae_dtype = convert_dtype(ae_dtype)
model.model.dtype = convert_dtype(diff_dtype)
samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
if args.log_history:
os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
f.write(str(event_dict))
f.close()
Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
for i, result in enumerate(results):
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
return [input_image] + results, event_id, 3, ''
def load_and_reset(param_setting):
edm_steps = default_setting.edm_steps
s_stage2 = 1.0
s_stage1 = -1.0
s_churn = 5
s_noise = 1.003
a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
'detailing, hyper sharpness, perfect without deformations.'
n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, CG Style, ' \
'3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
'signature, jpeg artifacts, deformed, lowres, over-smooth'
color_fix_type = 'Wavelet'
spt_linear_s_stage2 = 0.0
linear_s_stage2 = False
linear_CFG = True
if param_setting == "Quality":
s_cfg = default_setting.s_cfg_Quality
spt_linear_CFG = default_setting.spt_linear_CFG_Quality
elif param_setting == "Fidelity":
s_cfg = default_setting.s_cfg_Fidelity
spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
else:
raise NotImplementedError
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2
def submit_feedback(event_id, fb_score, fb_text):
if args.log_history:
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'r') as f:
event_dict = eval(f.read())
f.close()
event_dict['feedback'] = {'score': fb_score, 'text': fb_text}
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
f.write(str(event_dict))
f.close()
return 'Submit successfully, thank you for your comments!'
else:
return 'Submit failed, the server is not set to log history.'
title_md = """
# **SUPIR: Practicing Model Scaling for Photo-Realistic Image Restoration**
⚠️SUPIR is still a research project under tested and is not yet a stable commercial product.
[[Paper](https://arxiv.org/abs/2401.13627)]   [[Project Page](http://supir.xpixel.group/)]   [[How to play](https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png)]
"""
claim_md = """
## **Terms of use**
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
## **License**
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
"""
block = gr.Blocks(title='SUPIR').queue()
with block:
with gr.Row():
gr.Markdown(title_md)
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column():
gr.Markdown("<center>Input</center>")
input_image = gr.Image(type="numpy", elem_id="image-input", height=400, width=400)
with gr.Column():
gr.Markdown("<center>Stage1 Output</center>")
denoise_image = gr.Image(type="numpy", elem_id="image-s1", height=400, width=400)
prompt = gr.Textbox(label="Prompt", value="")
with gr.Accordion("Stage1 options", open=False):
gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
with gr.Accordion("LLaVA options", open=False):
temperature = gr.Slider(label="Temperature", minimum=0., maximum=1.0, value=0.2, step=0.1)
top_p = gr.Slider(label="Top P", minimum=0., maximum=1.0, value=0.7, step=0.1)
qs = gr.Textbox(label="Question", value="Describe this image and its style in a very detailed manner. "
"The image is a realistic photography, not an art painting.")
with gr.Accordion("Stage2 options", open=False):
num_samples = gr.Slider(label="Num Samples", minimum=1, maximum=4 if not args.use_image_slider else 1
, value=1, step=1)
upscale = gr.Slider(label="Upscale", minimum=1, maximum=8, value=1, step=1)
edm_steps = gr.Slider(label="Steps", minimum=1, maximum=200, value=default_setting.edm_steps, step=1)
s_cfg = gr.Slider(label="Text Guidance Scale", minimum=1.0, maximum=15.0,
value=default_setting.s_cfg_Quality, step=0.1)
s_stage2 = gr.Slider(label="Stage2 Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
s_stage1 = gr.Slider(label="Stage1 Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
a_prompt = gr.Textbox(label="Default Positive Prompt",
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
'hyper sharpness, perfect without deformations.')
n_prompt = gr.Textbox(label="Default Negative Prompt",
value='painting, oil painting, illustration, drawing, art, sketch, oil painting, '
'cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, '
'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
'deformed, lowres, over-smooth')
with gr.Row():
with gr.Column():
linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
maximum=9.0, value=default_setting.spt_linear_CFG_Quality, step=0.5)
with gr.Column():
linear_s_stage2 = gr.Checkbox(label="Linear Stage2 Guidance", value=False)
spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
maximum=1., value=0., step=0.05)
with gr.Row():
with gr.Column():
diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16",
interactive=True)
with gr.Column():
ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16",
interactive=True)
with gr.Column():
color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", value="Wavelet",
interactive=True)
with gr.Column():
model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", value="v0-Q",
interactive=True)
with gr.Column():
gr.Markdown("<center>Stage2 Output</center>")
if not args.use_image_slider:
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery1")
else:
result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
with gr.Row():
with gr.Column():
denoise_button = gr.Button(value="Stage1 Run")
with gr.Column():
llave_button = gr.Button(value="LlaVa Run")
with gr.Column():
diffusion_button = gr.Button(value="Stage2 Run")
with gr.Row():
with gr.Column():
param_setting = gr.Dropdown(["Quality", "Fidelity"], interactive=True, label="Param Setting",
value="Quality")
with gr.Column():
restart_button = gr.Button(value="Reset Param", scale=2)
with gr.Accordion("Feedback", open=True):
fb_score = gr.Slider(label="Feedback Score", minimum=1, maximum=5, value=3, step=1,
interactive=True)
fb_text = gr.Textbox(label="Feedback Text", value="", placeholder='Please enter your feedback here.')
submit_button = gr.Button(value="Submit Feedback")
with gr.Row():
gr.Markdown(claim_md)
event_id = gr.Textbox(label="Event ID", value="", visible=False)
llave_button.click(fn=llave_process, inputs=[denoise_image, temperature, top_p, qs], outputs=[prompt])
denoise_button.click(fn=stage1_process, inputs=[input_image, gamma_correction],
outputs=[denoise_image])
stage2_ips = [input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select]
diffusion_button.click(fn=stage2_process, inputs=stage2_ips, outputs=[result_gallery, event_id, fb_score, fb_text])
restart_button.click(fn=load_and_reset, inputs=[param_setting],
outputs=[edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt,
color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2])
submit_button.click(fn=submit_feedback, inputs=[event_id, fb_score, fb_text], outputs=[fb_text])
block.launch(server_name=server_ip, server_port=server_port)