|
'''
|
|
# --------------------------------------------------------------------------------
|
|
# Color fixed script from Li Yi (https://github.com/pkuliyi2015/sd-webui-stablesr/blob/master/srmodule/colorfix.py)
|
|
# --------------------------------------------------------------------------------
|
|
'''
|
|
|
|
import torch
|
|
from PIL import Image
|
|
from torch import Tensor
|
|
from torch.nn import functional as F
|
|
|
|
from torchvision.transforms import ToTensor, ToPILImage
|
|
|
|
def adain_color_fix(target: Image, source: Image):
|
|
|
|
to_tensor = ToTensor()
|
|
target_tensor = to_tensor(target).unsqueeze(0)
|
|
source_tensor = to_tensor(source).unsqueeze(0)
|
|
|
|
|
|
result_tensor = adaptive_instance_normalization(target_tensor, source_tensor)
|
|
|
|
|
|
to_image = ToPILImage()
|
|
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0))
|
|
|
|
return result_image
|
|
|
|
def wavelet_color_fix(target: Image, source: Image):
|
|
|
|
to_tensor = ToTensor()
|
|
target_tensor = to_tensor(target).unsqueeze(0)
|
|
source_tensor = to_tensor(source).unsqueeze(0)
|
|
|
|
|
|
result_tensor = wavelet_reconstruction(target_tensor, source_tensor)
|
|
|
|
|
|
to_image = ToPILImage()
|
|
result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0))
|
|
|
|
return result_image
|
|
|
|
def calc_mean_std(feat: Tensor, eps=1e-5):
|
|
"""Calculate mean and std for adaptive_instance_normalization.
|
|
Args:
|
|
feat (Tensor): 4D tensor.
|
|
eps (float): A small value added to the variance to avoid
|
|
divide-by-zero. Default: 1e-5.
|
|
"""
|
|
size = feat.size()
|
|
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
|
b, c = size[:2]
|
|
feat_var = feat.reshape(b, c, -1).var(dim=2) + eps
|
|
feat_std = feat_var.sqrt().reshape(b, c, 1, 1)
|
|
feat_mean = feat.reshape(b, c, -1).mean(dim=2).reshape(b, c, 1, 1)
|
|
return feat_mean, feat_std
|
|
|
|
def adaptive_instance_normalization(content_feat:Tensor, style_feat:Tensor):
|
|
"""Adaptive instance normalization.
|
|
Adjust the reference features to have the similar color and illuminations
|
|
as those in the degradate features.
|
|
Args:
|
|
content_feat (Tensor): The reference feature.
|
|
style_feat (Tensor): The degradate features.
|
|
"""
|
|
size = content_feat.size()
|
|
style_mean, style_std = calc_mean_std(style_feat)
|
|
content_mean, content_std = calc_mean_std(content_feat)
|
|
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
|
|
|
def wavelet_blur(image: Tensor, radius: int):
|
|
"""
|
|
Apply wavelet blur to the input tensor.
|
|
"""
|
|
|
|
|
|
kernel_vals = [
|
|
[0.0625, 0.125, 0.0625],
|
|
[0.125, 0.25, 0.125],
|
|
[0.0625, 0.125, 0.0625],
|
|
]
|
|
kernel = torch.tensor(kernel_vals, dtype=image.dtype, device=image.device)
|
|
|
|
kernel = kernel[None, None]
|
|
|
|
kernel = kernel.repeat(3, 1, 1, 1)
|
|
image = F.pad(image, (radius, radius, radius, radius), mode='replicate')
|
|
|
|
output = F.conv2d(image, kernel, groups=3, dilation=radius)
|
|
return output
|
|
|
|
def wavelet_decomposition(image: Tensor, levels=5):
|
|
"""
|
|
Apply wavelet decomposition to the input tensor.
|
|
This function only returns the low frequency & the high frequency.
|
|
"""
|
|
high_freq = torch.zeros_like(image)
|
|
for i in range(levels):
|
|
radius = 2 ** i
|
|
low_freq = wavelet_blur(image, radius)
|
|
high_freq += (image - low_freq)
|
|
image = low_freq
|
|
|
|
return high_freq, low_freq
|
|
|
|
def wavelet_reconstruction(content_feat:Tensor, style_feat:Tensor):
|
|
"""
|
|
Apply wavelet decomposition, so that the content will have the same color as the style.
|
|
"""
|
|
|
|
content_high_freq, content_low_freq = wavelet_decomposition(content_feat)
|
|
del content_low_freq
|
|
|
|
style_high_freq, style_low_freq = wavelet_decomposition(style_feat)
|
|
del style_high_freq
|
|
|
|
return content_high_freq + style_low_freq
|
|
|
|
|