Spaces:
Running
on
Zero
Running
on
Zero
""" | |
adopted from | |
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
and | |
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
and | |
https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py | |
thanks! | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
from einops import repeat | |
def make_beta_schedule( | |
schedule, | |
n_timestep, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
): | |
if schedule == "linear": | |
betas = ( | |
torch.linspace( | |
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 | |
) | |
** 2 | |
) | |
return betas.numpy() | |
def extract_into_tensor(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def mixed_checkpoint(func, inputs: dict, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. This differs from the original checkpoint function | |
borrowed from https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py in that | |
it also works with non-tensor inputs | |
:param func: the function to evaluate. | |
:param inputs: the argument dictionary to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
tensor_keys = [key for key in inputs if isinstance(inputs[key], torch.Tensor)] | |
tensor_inputs = [ | |
inputs[key] for key in inputs if isinstance(inputs[key], torch.Tensor) | |
] | |
non_tensor_keys = [ | |
key for key in inputs if not isinstance(inputs[key], torch.Tensor) | |
] | |
non_tensor_inputs = [ | |
inputs[key] for key in inputs if not isinstance(inputs[key], torch.Tensor) | |
] | |
args = tuple(tensor_inputs) + tuple(non_tensor_inputs) + tuple(params) | |
return MixedCheckpointFunction.apply( | |
func, | |
len(tensor_inputs), | |
len(non_tensor_inputs), | |
tensor_keys, | |
non_tensor_keys, | |
*args, | |
) | |
else: | |
return func(**inputs) | |
class MixedCheckpointFunction(torch.autograd.Function): | |
def forward( | |
ctx, | |
run_function, | |
length_tensors, | |
length_non_tensors, | |
tensor_keys, | |
non_tensor_keys, | |
*args, | |
): | |
ctx.end_tensors = length_tensors | |
ctx.end_non_tensors = length_tensors + length_non_tensors | |
ctx.gpu_autocast_kwargs = { | |
"enabled": torch.is_autocast_enabled(), | |
"dtype": torch.get_autocast_gpu_dtype(), | |
"cache_enabled": torch.is_autocast_cache_enabled(), | |
} | |
assert ( | |
len(tensor_keys) == length_tensors | |
and len(non_tensor_keys) == length_non_tensors | |
) | |
ctx.input_tensors = { | |
key: val for (key, val) in zip(tensor_keys, list(args[: ctx.end_tensors])) | |
} | |
ctx.input_non_tensors = { | |
key: val | |
for (key, val) in zip( | |
non_tensor_keys, list(args[ctx.end_tensors : ctx.end_non_tensors]) | |
) | |
} | |
ctx.run_function = run_function | |
ctx.input_params = list(args[ctx.end_non_tensors :]) | |
with torch.no_grad(): | |
output_tensors = ctx.run_function( | |
**ctx.input_tensors, **ctx.input_non_tensors | |
) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
# additional_args = {key: ctx.input_tensors[key] for key in ctx.input_tensors if not isinstance(ctx.input_tensors[key],torch.Tensor)} | |
ctx.input_tensors = { | |
key: ctx.input_tensors[key].detach().requires_grad_(True) | |
for key in ctx.input_tensors | |
} | |
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): | |
# Fixes a bug where the first op in run_function modifies the | |
# Tensor storage in place, which is not allowed for detach()'d | |
# Tensors. | |
shallow_copies = { | |
key: ctx.input_tensors[key].view_as(ctx.input_tensors[key]) | |
for key in ctx.input_tensors | |
} | |
# shallow_copies.update(additional_args) | |
output_tensors = ctx.run_function(**shallow_copies, **ctx.input_non_tensors) | |
input_grads = torch.autograd.grad( | |
output_tensors, | |
list(ctx.input_tensors.values()) + ctx.input_params, | |
output_grads, | |
allow_unused=True, | |
) | |
del ctx.input_tensors | |
del ctx.input_params | |
del output_tensors | |
return ( | |
(None, None, None, None, None) | |
+ input_grads[: ctx.end_tensors] | |
+ (None,) * (ctx.end_non_tensors - ctx.end_tensors) | |
+ input_grads[ctx.end_tensors :] | |
) | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
args = tuple(inputs) + tuple(params) | |
return CheckpointFunction.apply(func, len(inputs), *args) | |
else: | |
return func(*inputs) | |
class CheckpointFunction(torch.autograd.Function): | |
def forward(ctx, run_function, length, *args): | |
ctx.run_function = run_function | |
ctx.input_tensors = list(args[:length]) | |
ctx.input_params = list(args[length:]) | |
ctx.gpu_autocast_kwargs = { | |
"enabled": torch.is_autocast_enabled(), | |
"dtype": torch.get_autocast_gpu_dtype(), | |
"cache_enabled": torch.is_autocast_cache_enabled(), | |
} | |
with torch.no_grad(): | |
output_tensors = ctx.run_function(*ctx.input_tensors) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): | |
# Fixes a bug where the first op in run_function modifies the | |
# Tensor storage in place, which is not allowed for detach()'d | |
# Tensors. | |
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
output_tensors = ctx.run_function(*shallow_copies) | |
input_grads = torch.autograd.grad( | |
output_tensors, | |
ctx.input_tensors + ctx.input_params, | |
output_grads, | |
allow_unused=True, | |
) | |
del ctx.input_tensors | |
del ctx.input_params | |
del output_tensors | |
return (None, None) + input_grads | |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
if not repeat_only: | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat( | |
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
) | |
else: | |
embedding = repeat(timesteps, "b -> b d", d=dim) | |
return embedding | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def mean_flat(tensor): | |
""" | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def normalization(channels): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(32, channels) | |
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. | |
class SiLU(nn.Module): | |
def forward(self, x): | |
return x * torch.sigmoid(x) | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
# return super().forward(x.float()).type(x.dtype) | |
return super().forward(x) | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
""" | |
Create a linear module. | |
""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |