Spaces:
Running
on
Zero
Running
on
Zero
from contextlib import contextmanager | |
import torch | |
import torch.nn as nn | |
def init_empty_weights(include_buffers: bool=False): | |
"""Meta initialization context manager. | |
A context manager under which models are initialized with all parameters | |
on the meta device, therefore creating an empty model. Useful when just | |
initializing the model would blow the available RAM. | |
Args: | |
include_buffers (`bool`, *optional*, defaults to `False`): Whether or | |
not to also put all buffers on the meta device while initializing. | |
Example: | |
```python | |
import torch.nn as nn | |
# Initialize a model with 100 billions parameters in no time and without using any RAM. | |
with init_empty_weights(): | |
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)]) | |
``` | |
<Tip warning={true}> | |
Any model created under this context manager has no weights. As such you can't do something like | |
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`]. | |
</Tip> | |
""" | |
with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f: | |
yield f | |
def init_on_device(device: torch.device, include_buffers: bool=False): | |
"""Device initialization context manager. | |
A context manager under which models are initialized with all parameters | |
on the specified device. | |
Args: | |
device (`torch.device`): Device to initialize all parameters on. | |
include_buffers (`bool`, *optional*, defaults to `False`): Whether or | |
not to also put all buffers on the meta device while initializing. | |
Example: | |
```python | |
import torch.nn as nn | |
with init_on_device(device=torch.device("cuda")): | |
tst = nn.Liner(100, 100) # on `cuda` device | |
``` | |
""" | |
old_register_parameter = nn.Module.register_parameter | |
if include_buffers: | |
old_register_buffer = nn.Module.register_buffer | |
def register_empty_parameter(module, name, param): | |
old_register_parameter(module, name, param) | |
if param is not None: | |
param_cls = type(module._parameters[name]) | |
kwargs = module._parameters[name].__dict__ | |
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs) | |
def register_empty_buffer(module, name, buffer): | |
old_register_buffer(module, name, buffer) | |
if buffer is not None: | |
module._buffers[name] = module._buffers[name].to(device) | |
if include_buffers: | |
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']} | |
else: | |
tensor_constructors_to_patch = {} | |
def patch_tensor_constructor(fn): | |
def wrapper(*args, **kwargs): | |
kwargs['device'] = device | |
return fn(*args, **kwargs) | |
return wrapper | |
try: | |
nn.Module.register_parameter = register_empty_parameter | |
if include_buffers: | |
nn.Module.register_buffer = register_empty_buffer | |
for torch_function_name in tensor_constructors_to_patch.keys(): | |
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name))) | |
yield | |
finally: | |
nn.Module.register_parameter = old_register_parameter | |
if include_buffers: | |
nn.Module.register_buffer = old_register_buffer | |
for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items(): | |
setattr(torch, torch_function_name, old_torch_function) |