Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from ...util import append_dims, instantiate_from_config | |
class Denoiser(nn.Module): | |
def __init__(self, weighting_config, scaling_config): | |
super().__init__() | |
self.weighting = instantiate_from_config(weighting_config) | |
self.scaling = instantiate_from_config(scaling_config) | |
def possibly_quantize_sigma(self, sigma): | |
return sigma | |
def possibly_quantize_c_noise(self, c_noise): | |
return c_noise | |
def w(self, sigma): | |
return self.weighting(sigma) | |
def __call__(self, network, input, sigma, cond): | |
sigma = self.possibly_quantize_sigma(sigma) | |
sigma_shape = sigma.shape | |
sigma = append_dims(sigma, input.ndim) | |
c_skip, c_out, c_in, c_noise = self.scaling(sigma) | |
c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape)) | |
return network(input * c_in, c_noise, cond) * c_out + input * c_skip | |
class DiscreteDenoiser(Denoiser): | |
def __init__( | |
self, | |
weighting_config, | |
scaling_config, | |
num_idx, | |
discretization_config, | |
do_append_zero=False, | |
quantize_c_noise=True, | |
flip=True, | |
): | |
super().__init__(weighting_config, scaling_config) | |
sigmas = instantiate_from_config(discretization_config)( | |
num_idx, do_append_zero=do_append_zero, flip=flip | |
) | |
self.register_buffer("sigmas", sigmas) | |
self.quantize_c_noise = quantize_c_noise | |
def sigma_to_idx(self, sigma): | |
dists = sigma - self.sigmas[:, None] | |
return dists.abs().argmin(dim=0).view(sigma.shape) | |
def idx_to_sigma(self, idx): | |
return self.sigmas[idx] | |
def possibly_quantize_sigma(self, sigma): | |
return self.idx_to_sigma(self.sigma_to_idx(sigma)) | |
def possibly_quantize_c_noise(self, c_noise): | |
if self.quantize_c_noise: | |
return self.sigma_to_idx(c_noise) | |
else: | |
return c_noise | |
class DiscreteDenoiserWithControl(DiscreteDenoiser): | |
def __call__(self, network, input, sigma, cond, control_scale): | |
sigma = self.possibly_quantize_sigma(sigma) | |
sigma_shape = sigma.shape | |
sigma = append_dims(sigma, input.ndim) | |
c_skip, c_out, c_in, c_noise = self.scaling(sigma) | |
c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape)) | |
return network(input * c_in, c_noise, cond, control_scale) * c_out + input * c_skip | |