|
import gradio as gr |
|
import numpy as np |
|
import time |
|
import math |
|
import random |
|
import imageio |
|
import torch |
|
|
|
from diffusers import AutoPipelineForImage2Image |
|
from PIL import Image, ImageFilter |
|
|
|
max_64_bit_int = 2**63 - 1 |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
floatType = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
variant = "fp16" if torch.cuda.is_available() else None |
|
|
|
pipe = AutoPipelineForImage2Image.from_pretrained("KamCastle/SUPIRcheckpoints", torch_dtype = floatType, variant = variant) |
|
pipe = pipe.to(device) |
|
|
|
def update_seed(is_randomize_seed, seed): |
|
if is_randomize_seed: |
|
return random.randint(0, max_64_bit_int) |
|
return seed |
|
|
|
def toggle_debug(is_debug_mode): |
|
if is_debug_mode: |
|
return [gr.update(visible = True)] |
|
return [gr.update(visible = False)] |
|
|
|
def check( |
|
source_img, |
|
prompt, |
|
negative_prompt, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
seed, |
|
debug_mode, |
|
progress = gr.Progress() |
|
): |
|
if source_img is None: |
|
raise gr.Error("Please provide an image.") |
|
|
|
if prompt is None or prompt == "": |
|
raise gr.Error("Please provide a prompt input.") |
|
|
|
def redraw( |
|
source_img, |
|
prompt, |
|
negative_prompt, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
seed, |
|
debug_mode, |
|
progress = gr.Progress() |
|
): |
|
check( |
|
source_img, |
|
prompt, |
|
negative_prompt, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
seed, |
|
debug_mode |
|
) |
|
start = time.time() |
|
progress(0, desc = "Preparing data...") |
|
|
|
if negative_prompt is None: |
|
negative_prompt = "" |
|
|
|
if num_inference_steps is None: |
|
num_inference_steps = 25 |
|
|
|
if guidance_scale is None: |
|
guidance_scale = 7 |
|
|
|
if image_guidance_scale is None: |
|
image_guidance_scale = 1.1 |
|
|
|
if strength is None: |
|
strength = 0.5 |
|
|
|
if denoising_steps is None: |
|
denoising_steps = 1000 |
|
|
|
if seed is None: |
|
seed = random.randint(0, max_64_bit_int) |
|
|
|
random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
input_image = source_img.convert("RGB") |
|
|
|
original_height, original_width, original_channel = np.array(input_image).shape |
|
output_width = original_width |
|
output_height = original_height |
|
|
|
|
|
if 1024 * 1024 < output_width * output_height: |
|
factor = ((1024 * 1024) / (output_width * output_height))**0.5 |
|
process_width = math.floor(output_width * factor) |
|
process_height = math.floor(output_height * factor) |
|
|
|
limitation = " Due to technical limitation, the image have been downscaled and then upscaled."; |
|
else: |
|
process_width = output_width |
|
process_height = output_height |
|
|
|
limitation = ""; |
|
|
|
|
|
if (process_width % 8) != 0 or (process_height % 8) != 0: |
|
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024): |
|
process_width = process_width - (process_width % 8) + 8 |
|
process_height = process_height - (process_height % 8) + 8 |
|
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024): |
|
process_width = process_width - (process_width % 8) + 8 |
|
process_height = process_height - (process_height % 8) |
|
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024): |
|
process_width = process_width - (process_width % 8) |
|
process_height = process_height - (process_height % 8) + 8 |
|
else: |
|
process_width = process_width - (process_width % 8) |
|
process_height = process_height - (process_height % 8) |
|
|
|
progress(None, desc = "Processing...") |
|
output_image = pipe( |
|
seeds = [seed], |
|
width = process_width, |
|
height = process_height, |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
image = input_image, |
|
num_inference_steps = num_inference_steps, |
|
guidance_scale = guidance_scale, |
|
image_guidance_scale = image_guidance_scale, |
|
strength = strength, |
|
denoising_steps = denoising_steps, |
|
show_progress_bar = True |
|
).images[0] |
|
|
|
if limitation != "": |
|
output_image = output_image.resize((output_width, output_height)) |
|
|
|
if debug_mode == False: |
|
input_image = None |
|
|
|
end = time.time() |
|
secondes = int(end - start) |
|
minutes = secondes // 60 |
|
secondes = secondes - (minutes * 60) |
|
hours = minutes // 60 |
|
minutes = minutes - (hours * 60) |
|
return [ |
|
output_image, |
|
"Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation, |
|
input_image |
|
] |
|
|
|
with gr.Blocks() as interface: |
|
gr.Markdown( |
|
""" |
|
<p style="text-align: center;"><b><big><big><big>Image-to-Image</big></big></big></b></p> |
|
<p style="text-align: center;">Modifies the global render of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p> |
|
<br/> |
|
<br/> |
|
🚀 Powered by <i>SDXL Turbo</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination. |
|
<br/> |
|
<ul> |
|
<li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li> |
|
<li>To <b>upscale</b> your image, I recommend to use <i>Ilaria Upscaler</i>,</li> |
|
<li>To change one <b>detail</b> on your image, I recommend to use <i>Inpaint SDXL</i>,</li> |
|
<li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li> |
|
<li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li> |
|
<li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li> |
|
<li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li> |
|
</ul> |
|
<br/> |
|
🐌 Slow process... ~2 hours. Your computer must not enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU and should also run on CUDA.<br/> |
|
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Image-to-Image?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> |
|
<br/> |
|
⚖️ You can use, modify and share the generated images but not for commercial uses. |
|
|
|
""" |
|
) |
|
with gr.Column(): |
|
source_img = gr.Image(label = "Your image", sources = ["upload", "webcam", "clipboard"], type = "pil") |
|
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image") |
|
strength = gr.Slider(value = 0.5, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original image, higher=follow the prompt") |
|
with gr.Accordion("Advanced options", open = False): |
|
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark") |
|
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality") |
|
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt") |
|
image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image") |
|
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result") |
|
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different") |
|
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed") |
|
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") |
|
|
|
submit = gr.Button("Redraw", variant = "primary") |
|
|
|
redrawn_image = gr.Image(label = "Redrawn image") |
|
information = gr.Label(label = "Information") |
|
original_image = gr.Image(label = "Original image", visible = False) |
|
|
|
submit.click(update_seed, inputs = [ |
|
randomize_seed, seed |
|
], outputs = [ |
|
seed |
|
], queue = False, show_progress = False).then(toggle_debug, debug_mode, [ |
|
original_image |
|
], queue = False, show_progress = False).then(check, inputs = [ |
|
source_img, |
|
prompt, |
|
negative_prompt, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
seed, |
|
debug_mode |
|
], outputs = [], queue = False, show_progress = False).success(redraw, inputs = [ |
|
source_img, |
|
prompt, |
|
negative_prompt, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
seed, |
|
debug_mode |
|
], outputs = [ |
|
redrawn_image, |
|
information, |
|
original_image |
|
], scroll_to_output = True) |
|
|
|
gr.Examples( |
|
fn = redraw, |
|
inputs = [ |
|
source_img, |
|
prompt, |
|
negative_prompt, |
|
num_inference_steps, |
|
guidance_scale, |
|
image_guidance_scale, |
|
strength, |
|
denoising_steps, |
|
seed, |
|
debug_mode |
|
], |
|
outputs = [ |
|
redrawn_image, |
|
information, |
|
original_image |
|
], |
|
examples = [ |
|
[ |
|
"./Examples/Example1.png", |
|
"Drawn image, line art, illustration, picture", |
|
"3d, photo, realistic, noise, blur, watermark", |
|
25, |
|
7, |
|
1.1, |
|
0.6, |
|
1000, |
|
42, |
|
False |
|
], |
|
], |
|
cache_examples = False, |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
## How to prompt your image |
|
|
|
To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality: |
|
``` |
|
A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use round brackets to increase the importance of a part: |
|
``` |
|
A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use several levels of round brackets to even more increase the importance of a part: |
|
``` |
|
A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can use number instead of several round brackets: |
|
``` |
|
A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
You can do the same thing with square brackets to decrease the importance of a part: |
|
``` |
|
A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k |
|
``` |
|
|
|
To easily read your negative prompt, organize it the same way as your prompt (not important for the AI): |
|
``` |
|
man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh |
|
``` |
|
""" |
|
) |
|
|
|
interface.queue().launch() |